Читаем Теплотехника полностью

Предположим, что Q– количество теплоты, подведенное к телу, которое необходимо затратить на осуществление работы и на преобразование внутренней энергии:

Q = ΔU +L,

где L = ml– количество работы;

ДU = mДu– разность внутренней энергии начального и конечного состояния;

Q = mq.

В случае массы тела, равной 1 кг:

q = Δu+l,

где l, q, Du – удельные количества работы, теплоты, разность внутренних энергий начального и конечного состояния. Если процесс бесконечно малый, то

dq = du + dl.

Полученное соотношение является математической моделью первого закона термодинамики. Отсюда следует такая формулировка закона: «Все количество теплоты, которое получает физическое тело, тратится на выполнение работы и на преобразование внутренней энергии тела».

Существует так называемое правило знаков для параметров: q > 0, если теплота подводится к физическому телу, и q <0, если отводится; l > 0, если работа совершается самим телом (расширение), и l < 0, если работу совершают над телом извне (сжатие); Du > 0 – если внутренняя энергия тела увеличивается, D< 0 – если внутренняя энергия уменьшается.

<p>31. Внутренняя энергия</p>

Внутренняя энергия складывается из внутренних кинетической и потенциальной энергий. Внутренняя кинетическая энергия создается хаотическим движением молекул вещества.

Кинетическая энергия всей макросистемы вычисляется:

где m– масса системы;

w– скорость ее движения в пространстве.

Силы взаимодействия молекул вещества друг с другом определяют внутреннюю потенциальную энергию тела.

Внутренней энергией называется такая энергия, которая заключена в самой системе и имеет две составляющие – кинетическую энергию.

Изменение удельной потенциальной (внутренней) энергии того же тела. Изменение всей удельной (внутренней) энергии при термодинамическом процессе будет выглядеть так:

Δu – Ukир.

Внутренняя энергия рабочего тела произвольной массы при этом рассчитывается по формуле:

Δv-Vk – Vp.

Предположим, что рабочее тело переходит из первого состояния во второе при подводе теплоты извне. Тогда количество этой теплоты выразится в виде:

q1,2 – u2 -U1.

Процесс проходит по изохорному закону, имеем:

q1,2 = ćv (T2 -T1).

В общем виде для любого вещества массой m:

v2 -v1v(T2– T1),

где T1 – начальная температура термодинамического процесса;

T2– конечная температура;

u1 – начальная величина внутренней энергии;

u2 – конечная величина внутренней энергии;

ć– средняя удельная теплоемкость (изохорная).

<p>32. Вычисление работы газа</p>

Газ получает теплоту от определенного источника вне системы. обозначим давление газа буквой р, площадь поршня – S, тогда под действием внешней силы F = pS на поршень он будет неподвижен. При уменьшении внешней силы F разность этих двух сил pS – F сместит поршень вправо. Газ под поршнем будет расширяться и преодолевать внешние силы, совершая при этом работу. При равновесном процессе имеем следующее.

1. Поршень должен перемещаться по цилиндру бесконечно медленно (т. е. с бесконечно малой скоростью). Это даст возможность считать, что давление газа по всему объему в любой момент времени одинаково.

2. Температура источника тепла практически не отличается от температуры рабочего тела (в качестве которого используем газ), т. е. разность их температур бесконечно мала. Это дает возможность считать, что температура по всему объему газа в любой момент времени одинакова.

При таких условиях процесс расширения рабочего тела в любой момент времени будет иметь температуру, плотность и давление одинаковыми во всем объеме, т. е. его состояние также будет равновесным.

Аналитическое решение задачи для вычисления работы газа вследствие его расширения. Скорость поршня во время перемещения его в цилиндре бесконечно мала. Поэтому для анализа процесса расширения разобьем весь отрезок пути, пройденного поршнем, на бесконечно малые части dl. Тогда dA(элементарная работа) на любом элементарном отрезке dl определяется произведением:

dA = pSdl,

где pS– сила;

dl– путь.

Используя равенство

Sdl = dv,

получаем

dA = pdv.

Дает выражение:

где А – работа, которую при расширении совершает газ массой j кг.

Такую работу, которую газ совершает при расширении, называют еще технической.

<p>33. Обратимые и необратимые процессы</p>

Если термодинамическая система под действием внешних сил проходит ряд последовательных состояний, то их совокупность называют термодинамическим процессом. Этот процесс совершается рабочим телом, а его состояние изменяется таким образом, что масса остается постоянной. Основным свойством упрощенного идеального процесса считается его обратимость.

Перейти на страницу:

Все книги серии Шпаргалки

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки