In fact, the complete structure of complicated protein molecules like haemoglobin cannot be understood solely on the basis of wave mechanics. This is because of the way they are put together from amino acid units. But for simpler molecules, which may still contain many particles, you could (in imagination at least) do what I have just described for the ball-and-strut model. Start with one of the model configurations shown in chemistry textbooks, and look at the ψ meters, especially the blue one. It will give a high reading. Around that highly probable structure are other similar structures, all with a high – but not quite so high – blue intensity. Individual units of the structure – simpler forms of Dawkins’s ‘twigs’ – could be moved as a whole, say by twisting them, from the most probable configuration, and the blue intensity would drop. It would also drop if one atom of the few dozen within the twig were moved from the most-favoured position. The molecule is not just the most probable configuration. It is all possible configurations with their ψ values, held in balance by the laws of wave mechanics. The existence and most-favoured shape of molecules can be understood in no other way.
Contrary to the impression given in many books, quantum mechanics is not about particles in space: it is about systems being in configurations – at ‘points’ in a Q, or ‘hybrid Platonia’. That is something quite different from individual probabilities for individual particles being at different points of ordinary space. Each ‘point’ is a whole configuration – a ‘universe’. The arena formed by the ‘points’ is unimaginably large. And classical physics puts the system at just one point in the arena. The wave function, in contrast, is in principle everywhere.
This is what I mean by saying that Schrödinger opened the door onto a vast new arena. Compared with Schrödinger’s vistas, grander than any Wagnerian entrance into Valhalla, the Heisenberg uncertainty relation for a single particle captures little of quantum mechanics. All revolutions in physics pale into insignificance beside Schrödinger’s step into the configuration space Q. Not that he did it happily.
CORRELATIONS AND ENTANGLEMENT
It is not possible to observe the extraordinary quantum arena directly. Some people do not believe it exists at all. To a large degree it has been deduced, or surmised, from phenomena observed in systems of a few particles. Getting clear, direct evidence for the quantum behaviour of single particles was difficult. It was long after Dirac made his memorable remark about each photon interfering with itself that the development of sources which release individual particles with long time intervals between releases confirmed the build-up of interference patterns in individual ‘hits’. In the last two decades, it has become possible to create in the laboratory pure quantum states of two particles, whose Q therefore has six dimensions. The quantum predictions, all verified, are not easy to explain in many words, let alone a few, and a serious attempt to do so would take me too far from my main story. The simplest possible illustration is given by two particles moving on a single line; each has a one-dimensional Q and together they have a two-dimensional configuration space (Figure 39).
As for a single particle, the maximally informative description of a quantum system at any instant
Let us start with position predictions. Just as we did for a single particle, we can form from ψ the sum of the squares of its intensities, finding the intensity of the ‘blue mist’ (Figure 40). This gives the relative probability that the system will be found at the corresponding point in Q if an appropriate measurement is made. The important thing is that a single point in Q corresponds to positions of both particles. Anyone who has not understood this has not understood quantum mechanics. It is this fact, coupled with complementarity, that leads to the most startling quantum phenomena.