It is a basic Copenhagen tenet that the probabilistic statements reflect a fundamental property of nature, not simply our ignorance. It is not that before the measurement the particle does have a definite momentum and we simply do not know it. Instead, all momenta in the superposition are present as potentialities, and measurement forces one of them to be actualized. This is justified by a simple and persuasive fact. If we do not perform measurement but instead allow ψ to evolve, and only later make some measurement, then the things observed later (like the two-slit fringes) are impossible to explain unless all states were present initially and throughout the subsequent evolution. Outcomes in quantum mechanics are determined by chance at the most fundamental level. This is the scenario of the dice-playing God that so disturbed Einstein.
If anything, the second cardinal fact disturbed him even more. There seems to be a thoroughgoing indefiniteness of nature even more radical than the probabilistic uncertainties. As we have seen, one and the same state can be regarded as a superposition of either momentum or position eigenstates. It is the way this mathematics translates into physics that is startling. The experimentalist has complete freedom to choose what is to be measured: position or momentum. Both are present simultaneously as potentialities in the wave function. The experimentalist merely has to choose between set-ups designed to measure position or momentum. Once the choice is made, outcomes can then be predicted – and one outcome is actualized when the measurement is made. In fact, the indefiniteness is even greater since other quantities, or
Only one experiment can be made – for position or momentum, say, but not both. Every measurement ‘collapses’ the wave function. After the collapse, the wave function, which could have been used to predict outcomes of alternative measurements, has been changed irrevocably: there is no going back to the experiment we opted not to perform. It is a very singular business. Whatever observable we decide to measure, we get a definite result. But the observable that is made definite depends on our whim. The many people who, like Einstein, believe in a real and definite world find this immensely disconcerting. What is out there in the world seems to depend on mere thoughts that come into our mind. Most commentators believe that this radical indefiniteness – the possibility to actualize either position or momentum but not both – is the most characteristic difference between classical and quantum physics. In classical physics, position and momentum are equally real, and they are also perfectly definite.
The fact that in quantum mechanics one can choose to measure one but not both of two quantities was called
HEINSENBERG’S UNCERTAINTY PRINCIPLE
Heisenberg’s famous uncertainty relation gives quantitative expression to complementarity for position and momentum. De Broglie’s relation
Mathematically, we can in fact construct wave packets in which the positions are restricted to a small range, from