Читаем The Epigenetics Revolution полностью

As we have already discussed, C. elegans is a very useful model system because we know exactly how every cell should normally develop. The timing and sequence of the different stages is very tightly regulated. One of the key regulators is a protein called LIN-14. The LIN-14 gene is highly expressed (a lot of LIN-14 protein is produced) during the very early embryo stages, but is down-regulated as the worms move from larval stage 1 to larval stage 2. If the LIN-14 gene is mutated the worm gets the timing of the different stages wrong. If LIN-14 protein stays on for too long the worm starts to repeat early developmental stages. If LIN-14 protein is lost too early the worm moves into later larval stages prematurely. Either way, the worm gets very messed up, and normal adult structures don’t develop.

In 1993 two labs working independently showed how LIN-14 expression was controlled[138][139]. Unexpectedly, the key event was binding of a small ncRNA to the LIN-14 mRNA molecule. This is shown in Figure 10.3. It is an example of post-transcriptional gene silencing, where an mRNA is produced but is prevented from generating a protein. This is a very different way of controlling gene expression from that used by the long ncRNAs.

Figure 10.3 Schematic to demonstrate how expression of microRNAs at specific developmental stages can radically alter expression of a target gene.


The importance of this work is that it laid the foundation for a whole new model for the regulation of gene expression. Small ncRNAs are now known to be a mechanism used by organisms throughout the plant and animal kingdoms to control gene expression. There are various different types of small ncRNAs, but we’ll concentrate mainly on the microRNAs (miRNAs).

At least 1,000 different miRNAs have been identified in mammalian cells. miRNAs are about 21 nucleotides (bases) in length (sometimes slightly smaller or longer) and most of them seem to act as post-transcriptional regulators of gene expression. They don’t stop production of an mRNA, instead they regulate how that mRNA behaves. Typically, they do this by binding to the 3′ untranslated region (3′ UTR) of an mRNA molecule. This region is shown in Figure 10.3. It’s present in the mature mRNA, but it doesn’t code for any amino acids.

When genomic DNA is copied to make mRNA, the original transcript tends to be very long because it contains both exons (which code for amino acids) and introns (which do not). As we saw in Chapter 3, introns are removed during splicing to create an mRNA which codes for protein. But the Chapter 3 description passed over something. There are stretches of RNA at the beginning (known as 5′ UTR) and the end (3′ UTR) which don’t code for amino acids, but don’t get spliced out like introns either. Instead, these non-coding regions are retained on the mature mRNA and act as regulatory sequences. One of the functions of the 3′ UTR in particular is to bind regulatory molecules, including miRNAs.

How does a miRNA bind to an mRNA and what happens when it does? The miRNA and the 3′ UTR of the mRNA only interact if they recognise each other. This uses base-pairing, quite similar to that in double stranded DNA. G can bind C, A can bind U (in RNA, T is replaced by U). Although miRNAs are usually 21 bases in length, they don’t have to match the mRNA over the entire 21 nucleotides. The key region is positions 2 to 8 on the miRNA.

Sometimes the match from 2 to 8 is not perfect, but it’s still close enough for the two molecules to pair up. In these cases, binding of the miRNA prevents translation of the mRNA into protein (this is what happened in the case shown in Figure 10.3). If, however, the match is perfect, the binding of miRNA to mRNA triggers destruction of the mRNA, by enzymes that attach to the miRNA[140]. It’s not yet clear if positions 9 to 21 on the miRNAs also influence in a less direct way how these small molecules are targeted, or what the consequences of their targeting are. One thing we do know, however, is that a single miRNA can regulate more than one mRNA molecule. We saw in Chapter 3 how one gene could encode lots of different protein molecules, by altering the way in which messenger RNA is spliced. A single miRNA can influence many of these differently spliced versions simultaneously. Alternatively, a single miRNA can also influence quite unrelated proteins that are encoded by different genes but have similar 3′ UTR sequences.

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука
Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука
Взаимопомощь как фактор эволюции
Взаимопомощь как фактор эволюции

Труд известного теоретика и организатора анархизма Петра Алексеевича Кропоткина. После 1917 года печатался лишь фрагментарно в нескольких сборниках, в частности, в книге "Анархия".В области биологии идеи Кропоткина о взаимопомощи как факторе эволюции, об отсутствии внутривидовой борьбы представляли собой развитие одного из важных направлений дарвинизма. Свое учение о взаимной помощи и поддержке, об отсутствии внутривидовой борьбы Кропоткин перенес и на общественную жизнь. Наряду с этим он признавал, что как биологическая, так и социальная жизнь проникнута началом борьбы. Но социальная борьба плодотворна и прогрессивна только тогда, когда она помогает возникновению новых форм, основанных на принципах справедливости и солидарности. Сформулированный ученым закон взаимной помощи лег в основу его этического учения, которое он развил в своем незавершенном труде "Этика".

Петр Алексеевич Кропоткин

Культурология / Биология, биофизика, биохимия / Политика / Биология / Образование и наука
Основы психофизиологии
Основы психофизиологии

В учебнике «Основы психофизиологии» раскрыты все темы, составляющие в соответствии с Государственным образовательным стандартом высшего профессионального образования содержание курса по психофизиологии, и дополнительно те вопросы, которые представляют собой «точки роста» и привлекают значительное внимание исследователей. В учебнике описаны основные методологические подходы и методы, разработанные как в отечественной, так и в зарубежной психофизиологии, последние достижения этой науки.Настоящий учебник, который отражает современное состояние психофизиологии во всей её полноте, предназначен студентам, аспирантам, научным сотрудникам, а также всем тем, кто интересуется методологией науки, психологией, психофизиологией, нейронауками, методами и результатами объективного изучения психики.

Игорь Сергеевич Дикий , Людмила Александровна Дикая , Юрий Александров , Юрий Иосифович Александров

Детская образовательная литература / Биология, биофизика, биохимия / Биология / Книги Для Детей / Образование и наука