On 22 June they arrived at the foot of the volcano where they spent a fitful night in a small village. Early the next morning, Humboldt’s team began the ascent together with a group of local porters. They crossed the grassy plains and slopes on mules until they reached an altitude of 13,500 feet. As the rocks became steeper, they left the animals behind and continued on foot. The weather was turning against them. It had snowed during the night and the air was cold. Unlike the previous days, the summit of Chimborazo was shrouded in fog. Once in a while the fog lifted, granting them a brief yet tantalizing glimpse of the peak. It would be a long day.
Snow-capped Chimborazo (Illustration Credit 7.1)
At 15,600 feet their porters refused to go on. Humboldt, Bonpland, Montúfar and José divided the instruments between them and continued on their own. The fog held Chimborazo’s summit in its embrace. Soon they were crawling on all fours along a high ridge that narrowed to a dangerous two inches with steep cliffs falling away to their left and right – fittingly the Spanish called this ridge the
Despite these difficulties, Humboldt still had the energy to set up his instruments every few hundred feet as they ascended. The icy wind had chilled the brass instruments and handling the delicate screws and levers with half-frozen hands was almost impossible. He plunged his thermometer into the ground, read the barometer and collected air samples to analyse its chemical components. He measured humidity and tested the boiling point of water at different altitudes. They also kicked boulders down the precipitous slopes to test how far they would roll.
After an hour of treacherous climbing, the ridge became a little less steep but now sharp rocks tore their shoes and their feet began to bleed. Then, suddenly, the fog lifted, revealing Chimborazo’s white peak glinting in the sun, a little over 1,000 feet above them – but they also saw that their narrow ridge had ended. Instead, they were confronted by the mouth of a huge crevasse which opened in front of them. To get around it would have involved walking across a field of deep snow but by now it was 1 p.m. and the sun had melted the icy crust that covered the snow. When Montúfar gingerly tried to tread on it, he sank so deeply that he completely disappeared. There was no way to cross. As they paused, Humboldt took out the barometer again and measured their altitude at 19,413 feet. Though they wouldn’t make it to the summit, it still felt like being on the top of the world. No one had ever come this high – not even the early balloonists in Europe.
Looking down Chimborazo’s slopes and the mountain ranges in the distance, everything that Humboldt had seen in the previous years came together. His brother Wilhelm had long believed that Alexander’s mind was made ‘to connect ideas, to detect chains of things’. As he stood that day on Chimborazo, Humboldt absorbed what lay in front of him while his mind reached back to all the plants, rock formations and measurements that he had seen and taken on the slopes of the Alps, the Pyrenees and in Tenerife. Everything that he had ever observed fell into place. Nature, Humboldt realized, was a web of life and a global force. He was, a colleague later said, the first to understand that everything was interwoven as with ‘a thousand threads’. This new idea of nature was to change the way people understood the world.
Humboldt was struck by this ‘resemblance which we trace in climates the most distant from each other’. Here in the Andes, for example, grew a moss that reminded him of a species from the forests in northern Germany, thousands of miles away. On the mountains near Caracas he had examined rhododendron-like plants – alpine rose trees, as he called them – which were like those from the Swiss Alps. Later, in Mexico, he would find pines, cypresses and oaks that were similar to those that grew in Canada. Alpine plants could be found on the mountains of Switzerland, in Lapland and here in the Andes. Everything was connected.