Читаем The Science of Interstellar полностью

Nine years later, Interstellar is achieving all we envisioned. But the path from there to here has been a bit like the “Perils of Pauline,” with many a spot where our dream could have collapsed. We acquired and then lost the legendary director Steven Spielberg. We acquired a superb young screenwriter, Jonathan Nolan, and then lost him twice, at crucial stages, for many months each. The movie sat in limbo, directorless, for two and a half years. Then, wondrously, it was resurrected and transformed in the hands of Jonathan’s brother, Christopher Nolan, the greatest director of his young generation.

Steven Spielberg, the Initial Director

In February 2006, four months after we began brainstorming, Lynda had lunch with Todd Feldman, Spielberg’s agent at the Creative Artists Agency, CAA. When Feldman asked what movies she was working on, she described her collaboration with me, and our vision for a sci-fi movie with real science woven in from the outset—our dream for Interstellar. Feldman got excited. He thought Spielberg might be interested and urged Lynda to send him a treatment that very day! (A “treatment” is a description of the story and characters, usually twenty pages or longer.)

All we had in writing were a few e-mail exchanges and notes from a few dinner conversations. So we worked at whirlwind speed for a couple of days to craft an eight-paged treatment we were proud of, and sent it off. A few days later Lynda e-mailed me: “Spielberg has read it and is very interested. We may need to have a little meeting with him. Game? XX Lynda.”

Of course I was game! But a week later, before any meeting could be arranged, Lynda phoned: “Spielberg is signing on to direct our Interstellar!” Lynda was ecstatic. I was ecstatic. “This kind of thing never happens in Hollywood,” she told me. “Never.” But it did.

I then confessed to Lynda that I had seen only one Spielberg movie in my life—ET, of course. (As an adult, I had never been all that interested in movies.) So she gave me a homework assignment: Spielberg Movies Kip Must Watch.

A month later, on March 27, 2006, we had our first meeting with Spielberg—or Steven, as I began to call him. We met in a homey conference room in the heart of his movie production company Amblin, in Burbank.

At our meeting, I suggested to Steven and Lynda two guidelines for the science of Interstellar:

1. Nothing in the film will violate firmly established laws of physics, or our firmly established knowledge of the universe.

2. Speculations (often wild) about ill-understood physical laws and the universe will spring from real science, from ideas that at least some “respectable” scientists regard as possible.

Steven seemed to buy in, and then accepted Lynda’s proposal to convene a group of scientists to brainstorm with us, an Interstellar Science Workshop.

The workshop was on June 2 at the California Institute of Technology (Caltech), in a conference room down the hall from my office.

It was an eight-hour, free-wheeling, intoxicating discussion among fourteen scientists (astrobiologists, planetary scientists, theoretical physicists, cosmologists, psychologists, and a space-policy expert) plus Lynda, Steven, and Steven’s father Arnold, and me. We emerged, exhausted but exhilarated with a plethora of new ideas and objections to our old ideas. Stimuli for Lynda and me, as we revised and expanded our treatment.

It took us six months due to our other commitments, but by January 2007 our treatment had grown to thirty-seven pages, plus sixteen pages about the science of Interstellar.

Jonathan Nolan, the Screenwriter

In parallel, Lynda and Steven were interviewing potential screenwriters. It was a long process that ultimately converged on Jonathan Nolan, a thirty-one-year-old who had coauthored (with his brother Christopher) just two screenplays, The Prestige and The Dark Knight, both big hits.

Jonathan, or Jonah as his friends call him, had little knowledge of science, but he was brilliant and curious and eager to learn. He spent many months devouring books about all the science relevant to Interstellar and asking probing questions. And he brought to our film big new ideas that Steven, Lynda, and I embraced.

Jonah was wonderful to work with. He and I brainstormed together many times about the science of Interstellar, usually over a two- or three-hour lunch at the Caltech faculty club, the Athenaeum. Jonah would come to lunch brimming with new ideas and questions. I would react on the spot: this is scientifically possible, that isn’t,… My reactions were sometimes wrong. Jonah would press me: Why? What about…? But I’m slow. I would go home and sleep on it. In the middle of the night, with my gut reactions suppressed, I would often find some way to make what he wanted to work, work. Or find an alternative that achieved the end he sought. I got good at creative thinking when half asleep.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука