I would even suggest that phase transitions may apply to human origins. Over the millions of years that led up to
Then sometime about a hundred and fifty thousand years ago there was an explosive development of certain key brain structures and functions whose fortuitous combinations resulted in the mental abilities that make us special in the sense that I am arguing for. We went through a
And just what structural brain improvements were the keys to all of this? I will be happy to explain. But before I do that, I should give you a survey of brain anatomy so you can best appreciate the answer.
A Brief Tour of Your Brain
The human brain is made up of about 100 billion nerve cells, or neurons (Figure Int.1). Neurons “talk” to each other through threadlike fibers that alternately resemble dense, twiggy thickets (dendrites) and long, sinuous transmission cables (axons). Each neuron makes from one thousand to ten thousand contacts with other neurons. These points of contact, called synapses, are where information gets shared between neurons. Each synapse can be excitatory or inhibitory, and at any given moment can be on or off. With all these permutations the number of possible brain states is staggeringly vast; in fact, it easily exceeds the number of elementary particles in the known universe.
Given this bewildering complexity, it’s hardly surprising that medical students find neuroanatomy tough going. There are almost a hundred structures to reckon with, most of them with arcane-sounding names. The fimbria. The fornix. The indusium griseum. The locus coeruleus. The nucleus motoris dissipatus formationis of Riley. The medulla oblongata. I must say, I love the way these Latin names roll off the tongue. Meh-
Fortunately, underlying all this lyrical complexity there is a basic plan of organization that’s easy to understand. Neurons are connected into networks that can process information. The brain’s many dozens of structures are ultimately all purpose-built networks of neurons, and often have elegant internal organization. Each of these structures performs some set of discrete (though not always easy to decipher) cognitive or physiological functions. Each structure makes patterned connections with other brain structures, thus forming circuits. Circuits pass information back and forth and in repeating loops, and allow brain structures to work together to create sophisticated perceptions, thoughts, and behaviors.