Читаем The Worlds I See полностью

Когда выдавались свободные минуты, я предпочитал проводить их так же, как мой отец в последние три года, - писать письма родным и друзьям. Каждое написанное от руки послание было просьбой напомнить, что люди и вещи, которые я любил - в частности, бабушкина стряпня, - все еще существуют в мое отсутствие. Каждое ответное письмо, как бы радостно ни было видеть его в почтовом ящике, было горько-сладким подтверждением. Впервые в жизни далекий мир, о котором я мечтала, не был экзотической местностью или неизведанным рубежом. Это было место, которое я знал лучше, чем любое другое.

Оглядываясь назад, я задаюсь вопросом, можно ли было справиться с тоской по дому, осознав, что теперь я как никогда близок к революции в современной науке, пусть даже и географической. Дом в Парсиппани означал, что пропасть между моим происхождением и моим будущим не просто сократилась, а сократилась настолько, что я проведу остаток своего подросткового возраста менее чем в часе езды от творящейся истории - всего в нескольких милях по Гарден-Стейт-Парквей - и даже не буду знать об этом.

 

Янн ЛеКун однажды станет главным научным сотрудником Facebook по искусственному интеллекту, но его карьера в области исследований только начиналась в лаборатории Bell Labs в Холмделе, штат Нью-Джерси, , когда моя семья приехала в Америку. Непритязательный, но амбициозный, он в последние годы наделал много шума, продемонстрировав поразительные возможности алгоритма под названием "нейронная сеть" для точного распознавания человеческого почерка. Этот метод, еще относительно новый и далекий от популярности, которой он однажды достигнет, был радикальным отходом от предшествовавших ему десятилетий традиций ИИ. Вместо того чтобы пытаться описать почерк в виде дискретных правил - прямой край "1", кривая "2", симметричные половинки "3" и так далее, - нейросеть была разработана только для того, чтобы выводить закономерности в данных.

В случае с ЛеКуном это означало показать сети тысячи примеров реального человеческого почерка, охватывающих различные стили, текстуры и даже распространенные ошибки - всего более 7200 сканов рукописных почтовых индексов, предоставленных Почтовой службой США, - чтобы она выучила соответствующие шаблоны, как это делает человек. В результате был создан набор интуиции, который, хотя и трудно сформулировать в виде традиционной компьютерной программы, позволил алгоритму разобраться в беспорядке реального мира, как ничто другое, что было раньше.

Работа ЛеКуна имела впечатляющий успех. Его работа была настолько точной, что уже через несколько лет он стал использоваться в банкоматах по всей стране для считывания цифр, написанных на чеках. Спустя десятилетия после того, как Дартмутское исследовательское предложение представило миру идею искусственного интеллекта, эта область, наконец, заявила о своем самом практическом достижении.

Он также предвещал смелое будущее: после поколений жестких алгоритмов, пытавшихся исчерпывающе описать интеллект в терминах правил, которые часто называли "символическим ИИ", в конце 1980-х и начале 1990-х годов начался перелом в пользу этого более естественного подхода. Все большее внимание уделялось алгоритмам, которые решали задачи, обнаруживая закономерности на примерах, а не будучи явно запрограммированными - другими словами, учились делать, а не получали указания. Исследователи дали этому явлению подходящее название: "машинное обучение".

Среди наиболее поэтичных аспектов эволюции науки - период созревания идей. Не существует естественного закона, гарантирующего, что озарения появляются только тогда, когда их можно реализовать на практике, и история изобилует искрами вдохновения, появляющимися за годы, десятилетия или даже столетия до своего часа. Что действительно вдохновляет, так это стремление этих первых мыслителей отказаться от своих открытий; каким бы непрактичным ни казался путь вперед и какими бы маловероятными ни были перспективы экспериментального успеха, великими учеными движет врожденная жажда исследования, которая процветает даже в самых неблагоприятных обстоятельствах. На протяжении десятилетий именно такой была природа машинного обучения.

История машинного обучения - это, пожалуй, самая малоизвестная половина истории ИИ, остающаяся относительно нишевой, даже несмотря на то, что одно из первых признаний в ее адрес прозвучало из уст самого Алана Тьюринга. В работе 1950 года под названием "Вычислительные машины и интеллект" Тьюринг кратко противопоставил "ИИ на основе правил", в котором с нуля создается полноценный агент, способный к разумному поведению, и машинное обучение, в котором такому агенту позволяется развиваться самостоятельно, спросив: "Вместо того чтобы пытаться создать программу, имитирующую разум взрослого человека, почему бы не попытаться создать программу, имитирующую разум ребенка?" Действительно, с момента своего появления машинное обучение в той или иной степени черпало вдохновение в человеческом познании, в немалой степени благодаря современному развитию таких областей, как нейронауки.

Перейти на страницу:

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
История леса
История леса

Лес часто воспринимают как символ природы, антипод цивилизации: где начинается лес, там заканчивается культура. Однако эта книга представляет читателю совсем иную картину. В любой стране мира, где растет лес, он играет в жизни людей огромную роль, однако отношение к нему может быть различным. В Германии связи между человеком и лесом традиционно очень сильны. Это отражается не только в облике лесов – ухоженных, послушных, пронизанных частой сетью дорожек и указателей. Не менее ярко явлена и обратная сторона – лесом пропитана вся немецкая культура. От знаменитой битвы в Тевтобургском лесу, через сказки и народные песни лес приходит в поэзию, музыку и театр, наполняя немецкий романтизм и вдохновляя экологические движения XX века. Поэтому, чтобы рассказать историю леса, немецкому автору нужно осмелиться объять необъятное и соединить несоединимое – экономику и поэзию, ботанику и политику, археологию и охрану природы.Именно таким путем и идет автор «Истории леса», палеоботаник, профессор Ганноверского университета Хансйорг Кюстер. Его книга рассказывает читателю историю не только леса, но и людей – их отношения к природе, их хозяйства и культуры.

Хансйорг Кюстер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература