Читаем Том 1 полностью

Сократ. Так вот если бы эта сторона была в два фута и та в два фута, то сколько было бы футов во всем квадрате? Заметь только вот что. Если бы эта сторона была в два фута, а та – в один, разве всего в нем было бы не два фута?

d

Раб. Два.

Сократ. А когда и та сторона будет равна двум футам, разве не получится у нас дважды по два фута?

Раб. Получится.

Сократ. Значит, в этом квадрате будет дважды по два фута?

Раб. Верно.

Сократ. А сколько же это будет – дважды два фута? Посчитай и скажи!

Раб. Четыре, Сократ.

Сократ. А может быть фигура вдвое большая этой, но все же такая, чтобы у нее, как и у этой, все стороны были между собою равны?

Раб. Может.

Сократ. Сколько же в ней будет футов?

Раб. Восемь.

e

Сократ. Ну а теперь попробуй-ка сказать, какой длины у нее будет каждая сторона. У этой они имеют по два фута, а у той, что будет вдвое больше?

Раб. Ясно, Сократ, что вдвое длиннее.

Сократ. Видишь, Менон, я ничего ему не внушаю, а только спрашиваю. И вот теперь он думает, будто знает, какие стороны образуют восьмифутовый квадрат. Или, по-твоему, это не так?

Менон. Так.

Сократ. Что же, знает он это?

Менон. Вовсе не знает!

Сократ. Но думает, что такой квадрат образуют вдвое увеличенные стороны?

Менон. Да.

Сократ. Теперь смотри, как он сейчас вспомнит одно за другим все, что следует вспомнить. [К мальчику.] А ты скажи мне вот что. По-твоему выходит, что, если удвоить стороны, получается удвоенный квадрат?

83

Я имею в виду не такую фигуру, у которой одна сторона длинная, а другая короткая, а такую, у которой все четыре стороны равны, как у этой, но только удвоенную, восьмифутовую. Вот и посмотри: тебе все еще кажется, что ее образуют удвоенные стороны?

Раб. Да, кажется.

Сократ. А разве не выйдет у нас сторона вдвое больше этой, если мы, продолжив ее, добавим еще одну точно такую же?

Раб. Выйдет.

Сократ. Значит, по-твоему, если этих больших сторон будет четыре, то получится восьмифутовый квадрат?

b

Раб. Получится.

Сократ. Пририсуем-ка к этой еще три точно такие же стороны. Неужели, по-твоему, это и есть восьмифутовый квадрат?

Раб. Ну конечно.

Сократ. А разве не будет в нем четырех квадратов, каждый из которых равен этому, четырехфутовому?

Раб. Будет.

Сократ. Выходит, какой же он величины? Не в четыре ли раза он больше первого?

Раб. Как же иначе?

Сократ. Что же, он одновременно и в четыре, и в два раза больше первого?

Раб. Нет, клянусь Зевсом!

Сократ. Во сколько же раз он больше?

Раб. В четыре.

c

Сократ. Значит, благодаря удвоению сторон получается площадь не в два, а в четыре раза большая?

Раб. Твоя правда.

Сократ. А четырежды четыре – шестнадцать, не так ли?

Раб. Так.

Сократ. Из каких же сторон получается восьмифутовый квадрат? Ведь из таких вот получился квадрат, в четыре раза больший [четырехфутового]?

Раб. И я так говорю.

Сократ. А из сторон вдвое меньших – четырехфутовый?

Раб. Ну да.

Сократ. Ладно. А разве восьмифутовый не равен двум таким вот маленьким квадратам или половине этого большого квадрата?

Раб. Конечно, равен.

Сократ. Значит, стороны, из которых он получится, будут меньше этой большой стороны, но больше той маленькой.

d

Раб. Мне кажется, да.

Сократ. Очень хорошо; как тебе покажется, так и отвечай. Но скажи-ка мне: ведь в этой линии – два фута, а в этой – четыре, верно?

Раб. Верно.

Сократ. Значит, сторона восьмифутовой фигуры непременно должна быть больше двух и меньше четырех футов?

Раб. Непременно.

e

Сократ. А попробуй сказать, сколько в такой стороне, по-твоему, будет футов?

Раб. Три фута.

Сократ. Если она должна иметь три фута, то не надо ли нам прихватить половину вот этой [двухфутовой] стороны – тогда и выйдет три фута? Здесь – два фута, да отсюда один; и с другой стороны так же: здесь – два фута и один отсюда. Вот и получится фигура, о которой ты говоришь. Не так ли?

Раб. Так.

Сократ. Но если у нее одна сторона в три фута и другая тоже, не будет ли во всей фигуре трижды три фута?

Раб. Очевидно, так.

Сократ. А трижды три фута – это сколько?

Раб. Девять.

Сократ. А наш удвоенный квадрат сколько должен иметь футов, ты знаешь?

Раб. Восемь.

Сократ. Вот и не получился у нас из трехфутовых сторон восьмифутовый квадрат.

Раб. Не получился.

Сократ. Но из каких же получится? Попробуй сказать нам точно. И если не хочешь считать, то покажи.

84

Раб. Нет, Сократ, клянусь Зевсом, не знаю.

Сократ. Замечаешь, Менон, до каких пор он дошел уже в припоминании? Сперва он, так же как теперь, не знал, как велика сторона восьмифутового квадрата, но думал при этом, что знает, отвечал уверенно, так, словно знает, и ему даже в голову не приходила мысль о каком-нибудь затруднении. А сейчас он понимает, что это ему не под силу, и уж если не знает, то и думает, что не знает.

b

Менон. Твоя правда.

Сократ. И разве не лучше теперь обстоит у него дело с тем, чего он не знает?

Перейти на страницу:

Все книги серии Философское наследие

Опыты, или Наставления нравственные и политические
Опыты, или Наставления нравственные и политические

«Опыты, или Наставления нравственные и политические», представляющие собой художественные эссе на различные темы. Стиль Опытов лаконичен и назидателен, изобилует учеными примерами и блестящими метафорами. Бэкон называл свои опыты «отрывочными размышлениями» о честолюбии, приближенных и друзьях, о любви, богатстве, о занятиях наукой, о почестях и славе, о превратностях вещей и других аспектах человеческой жизни. В них можно найти холодный расчет, к которому не примешаны эмоции или непрактичный идеализм, советы тем, кто делает карьеру.Перевод:опыты: II, III, V, VI, IX, XI–XV, XVIII–XX, XXII–XXV, XXVIII, XXIX, XXXI, XXXIII–XXXVI, XXXVIII, XXXIX, XLI, XLVII, XLVIII, L, LI, LV, LVI, LVIII) — З. Е. Александрова;опыты: I, IV, VII, VIII, Х, XVI, XVII, XXI, XXVI, XXVII, XXX, XXXII, XXXVII, XL, XLII–XLVI, XLIX, LII–LIV, LVII) — Е. С. Лагутин.Примечания: А. Л. Субботин.

Фрэнсис Бэкон

Европейская старинная литература / Древние книги

Похожие книги

Афоризмы житейской мудрости
Афоризмы житейской мудрости

Немецкий философ Артур Шопенгауэр – мизантроп, один из самых известных мыслителей иррационализма; денди, увлекался мистикой, идеями Востока, философией своего соотечественника и предшественника Иммануила Канта; восхищался древними стоиками и критиковал всех своих современников; называл существующий мир «наихудшим из возможных миров», за что получил прозвище «философа пессимизма».«Понятие житейской мудрости означает здесь искусство провести свою жизнь возможно приятнее и счастливее: это будет, следовательно, наставление в счастливом существовании. Возникает вопрос, соответствует ли человеческая жизнь понятию о таком существовании; моя философия, как известно, отвечает на этот вопрос отрицательно, следовательно, приводимые здесь рассуждения основаны до известной степени на компромиссе. Я могу припомнить только одно сочинение, написанное с подобной же целью, как предлагаемые афоризмы, а именно поучительную книгу Кардано «О пользе, какую можно извлечь из несчастий». Впрочем, мудрецы всех времен постоянно говорили одно и то же, а глупцы, всегда составлявшие большинство, постоянно одно и то же делали – как раз противоположное; так будет продолжаться и впредь…»(А. Шопенгауэр)

Артур Шопенгауэр

Философия