Кроме движения коллоидных частиц, на которых и было впервые открыто броуновское движение, имеется еще целый ряд других явлений, и не только в лабораторных, но и в других условиях, позволяющих обнаружить броуновское движение. Если бы мы смогли соорудить чрезвычайно тонкое измерительное устройство, скажем, крохотное зеркальце, прикрепленное к тонкой кварцевой нити очень чувствительного баллистического гальванометра (фиг. 41.1), то зеркальце не стояло бы на месте, а непрерывно
плясало бы, поэтому если бы мы осветили это зеркальце лучом света и проследили за отраженным пятном, то потеряли бы надежду создать совершенный измерительный инструмент, так как зеркальце все время пляшет. Почему? Потому что средняя кинетическая энергия вращения зеркальца равна 1/2kT.
Фиг. 41.1. Чувствительный зеркальный гальванометр и образец записи шкалы как функция времени. Пучок света из источника L отражается от маленького зеркальца на шкале
.
Чему равен средний квадратичный угол качаний зеркальца? Предположим, что мы определили период собственных колебаний зеркальца, стукнув слегка по одной его стороне и наблюдая, как долго будет оно качаться взад и вперед, и пусть нам также известен момент инерции I. Формулу для кинетической энергии вращения мы знаем, это равенство (19.8): Т
=1/2Iω2. А потенциальная энергия пропорциональна квадрату угла отклонения, т. е. V=1/2αθ2. Но если мы знаем период колебаний t0 и можем вычислить собственную частоту ω0=2π/t0, то можно и потенциальную энергию записать в виде V=1/2/Iω02θ2. Мы знаем, что средняя кинетическая энергия равна 1/2 kT, но поскольку перед нами гармонический осциллятор, то средняя потенциальная энергия также равна 1/2kT. Следовательно,
(41.1)
Таким образом мы можем рассчитать колебания зеркальца гальванометра и тем самым найти предел точности нашего инструмента. Если нам нужно уменьшить колебания, то следует охладить зеркальце. Но здесь возникает интересный вопрос — в каком месте
его охладить? Все зависит от того, откуда оно получает больше «пинков». Если в колебаниях повинна кварцевая нить, то охлаждать нужно ее верхний конец, если же зеркальце находится в газовой среде и раскачивается в основном за счет соударений с молекулами газа, то лучше охладить газ. Итак, практически, если известно, почему происходит затухание колебаний, то оказывается, что имеется всегда какой-то источник флуктуации; к этому вопросу мы еще вернемся.Те же флуктуации работают, и довольно удивительным образом, в электрических цепях
. Предположим, что мы построили очень чувствительный, точный усилитель для какой-нибудь определенной частоты и к его входу подключили резонансную цепь (фиг. 41.2), настроенную на эту же частоту, наподобие радиоприемника, только получше.
Фиг. 41.2. Резонансная цепь с большим Q. а — реальная цепь при температуре T; б — искусственная цепь с идеальным (бесшумным) сопротивлением и «генератором шума».
Предположим, что мы захотели как можно точнее изучить флуктуации, для этого мы сняли напряжение, скажем, с индуктивности и подали его на усилитель. Конечно, во всякой цепи такого рода имеются некоторые потери. Это не идеальная резонансная цепь, но все же очень хорошая цепь, и обладает она малым сопротивлением (на схеме сопротивление показано, надо только помнить, что оно очень мало). А теперь мы хотим узнать, как велики флуктуации падения напряжения на индуктивности? Ответ
: Нам известно, что «кинетическая энергия», запасенная катушкой резонансной цепи, равна 1/2LI2 (см. гл. 25). Поэтому среднее значение 1/2 LI2 равно 1/2kT, это дает нам среднее квадратичное значение тока, а отсюда можно определить и среднее квадратичное значение напряжения. Если мы хотим знать падение напряжения на индуктивности, нам пригодится формула VL=iωLI, тогда средний квадрат модуля падения напряжения на индуктивности равен L2>=L2ω022>, а полагая 1/2L2>=1/2kT, получаем (41.2)
Итак, теперь мы можем рассчитать контур и предсказать, каким в нем будет так называемый шум Джонсона
, т. е. шум, связанный с тепловыми флуктуациями!Но откуда же эти флуктуации берутся? А все из-за сопротивления
, точнее говоря, в результате пляски электронов в сопротивлении. Ведь они находятся в тепловом равновесии с остальным материалом сопротивления, а это приводит к флуктуациям плотности электронов. Таким образом они порождают крошечные электрические поля, управляющие резонансной цепью.