Читаем Том 1. Механика, излучение и теплота полностью

До сих пор мы изучали движение молекул только при тепловом равновесии. А теперь нужно обсудить, как движутся молекулы газа, когда он близок к равновесию, но еще не достиг его полностью. Если газ слишком неравновесен, все становится чрезвычайно сложным и разобраться в том, что там происходит, очень трудно, а вот если отклонения от равновесия незначительны, то задачи решаются легко. Однако, чтобы рассмотреть, что происходит в таком газе, надо снова вернуться к кинетической теории. Статистическая механика и термодинамика пригодны, когда имеется равновесие, а чтобы проанализировать то, что происходит при отклонении от равновесия, приходится, так сказать, перебирать атом за атомом.

В качестве простого примера неравновесной задачи рассмотрим диффузию ионов в газе. Предположим, что в газе содержится немного ионов — электрически заряженных молекул. Если к газу приложить электрическое поле, то на каждый ион будет действовать сила, отличающаяся от сил, действующих на нейтральные молекулы. Если бы других молекул не было, то ион двигался бы с постоянным ускорением, пока не наткнулся бы на стенку ящика. Но наличие других молекул меняет дело: скорость иона возрастает лишь до тех пор, пока он не ударится о молекулу и не потеряет своего импульса. После этого он снова начинает ускоряться, но вновь теряет импульс. В результате ион вынужден двигаться по ломаному пути, хотя все же в конце концов он движется в направлении электрического поля. Мы замечаем, таким образом, что ион «дрейфует» со средней скоростью, пропорциональной электрическому полю; чем сильнее поле, тем быстрее движется ион. Конечно, пока существует поле и пока ион продолжает двигаться, не может быть и речи о тепловом равновесии. Система стремится прийти к равновесию, но для этого нужно, чтобы все ионы приклеились к стенке ящика. С помощью кинетической теории возможно вычислить скорость дрейфа ионов.

Наших математических познаний еще недостаточно, чтобы точно вычислить все, что произойдет, но мы можем получить приближенное решение, которое правильно передаст все существенные особенности явления. Мы можем определить зависимость эффекта от давления, температуры и т. п., но не в наших силах вычислить точно все коэффициенты, стоящие перед этими сомножителями. Поэтому не будем мучить себя заботой о точных значениях таких коэффициентов. Получить их можно только после очень тонкого математического анализа.

Прежде чем рассуждать о том, что происходит в отсутствие равновесия, посмотрим повнимательнее на равновесный газ. Необходимо, например, знать среднее время между двумя последовательными столкновениями молекулы.

Каждая молекула непрерывно сталкивается с другими молекулами. Происходят все эти столкновения, конечно, случайно. Если выбрать какую-нибудь молекулу, то за достаточно долгое время Т она получит определенное число N ударов. Если увеличить промежуток времени вдвое, то и число ударов возрастет вдвое. Таким образом, число столкновений пропорционально времени Т. Это можно выразить следующим образом:

(43.1)

Мы записали постоянную пропорциональности в виде 1/τ, где τ имеет размерность времени. Постоянная τ — это среднее время между столкновениями. Предположим для примера, что за час происходит 60 столкновений; тогда τ равно одной минуте. Мы будем говорить, что τ (одна минута) это среднее время между столкновениями.

Часто нам придется искать ответ на такой вопрос: Какова вероятность того, что молекула испытает столкновение в течение малого промежутка времени dt? Мы догадываемся, что эта вероятность равна dt/τ. Попытаемся, однако, привести более убедительные аргументы. Предположим, что в нашем распоряжении имеется очень большое число N молекул. Сколько молекул из этого числа столкнется в течение интервала времени dt? Если молекулы находятся в равновесном состоянии, то ничего не будет меняться в среднем со временем. Таким образом, N молекул, пробывших в ящике в течение интервала dt, испытают столько же соударений, сколько одна молекула за время Ndt. Число соударений одной молекулы за большое время Ndt известно — это Ndt/τ. А если число соударений между N молекулами за время dt равно Ndt/τ, то вероятность удара для одной молекулы равна 1/N части этой величины, или (1/N)(Ndt/τ)=dt/τ (как мы и говорили с самого начала). Таким образом, относительное число молекул, сталкивающихся за время dt, грубо говоря, равно dt/τ. Если, например, τ равно одной минуте, то за секунду столкнется 1/60 часть всех молекул.

Это означает, конечно, что если в данный момент 1/60 часть молекул подошла достаточно близко к тем, с кем они должны столкнуться, то их столкновение произойдет в течение следующей минуты.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука