Читаем Том 1. Механика, излучение и теплота полностью

Начнем с изучения основного процесса: на S-молекулу в газе из молекул фона действуют какая-то особая сила F (это может быть сила тяжести или электрическая сила) и, кроме того, более обычные силы, обусловленные столкновениями с молекулами фона. Нас интересует общий характер поведения S-молекулы. Детальное описание ее поведения — это непрерывные стремительные удары и следующие одно за другим столкновения с другими молекулами. Но если проследить внимательно, то станет ясно, что молекула неуклонно движется по направлению силы F. Мы говорим, что дрейф накладывается на беспорядочное движение. Но нам хотелось бы знать, как зависит скорость дрейфа от силы F

.

Если в какой-то произвольный момент времени начать наблюдать за S-молекулой, то можно надеяться, что попали мы как раз где-то между двумя столкновениями. Это время молекула употребит на то, чтобы в дополнение к скорости, оставшейся у нее после всех столкновений, увеличить составляющую скорости вдоль силы F. Немного погодя (в среднем через время τ) она снова испытает столкновение и начнет двигаться по новому отрезку своей траектории. Стартовая скорость, конечно, будет другой, а ускорение от силы F останется неизменным.

Чтобы упростить сейчас дело, предположим, что после каждого столкновения наша S-молекула выходит на совершенно «свободный» старт. Это значит, что у нее не осталось никаких воспоминаний о прежних ускорениях под действием силы F. Такое предположение было бы разумным, если бы наша S-молекула была намного легче молекул фона, но это, конечно, не так. Позднее мы обсудим более разумное предположение.

А пока предположим, что все направления скорости S-молекулы после каждого столкновения равновероятны. Стартовая скорость имеет любое направление и не может дать никакого вклада в результирующее движение, поэтому мы не будем принимать во внимание начальную скорость после каждого столкновения. Но, кроме случайного движения, каждая S-молекула в любой момент имеет дополнительную скорость в направлении силы F, которая увеличивается со времени последнего столкновения. Чему равно среднее значение этой

части скорости? Оно равно произведению ускорения F/m (где m — масса S-молекулы) на среднее время, прошедшее с момента последнего столкновения. Но среднее время, протекшее после последнего столкновения, должно быть равно среднему времени перед следующим столкновением, которое мы уже обозначили буквой τ. Средняя
скорость, порождаемая силой F,— это как раз скорость дрейфа; таким образом, мы пришли к соотношению

(43.13)

Это наше основное соотношение, главное во всей главе. При нахождении τ могут появиться всякого рода усложнения, но основной процесс определяется уравнением (43.13).

Обратите внимание, что скорость дрейфа пропорциональна силе. К сожалению, о названии для постоянной пропорциональности еще не договорились. Коэффициент перед силой каждого сорта имеет свое название. В задачах, связанных с электричеством, силу можно представить как произведение заряда на электрическое поле: F=qE; в этом случае постоянную пропорциональности между скоростью и электрическим полем Е

называют «подвижностью». Несмотря на возможные недоразумения, мы будем применять термин подвижность для отношения скорости дрейфа к силе любого сорта. Будем писать

(43.14)

и называть μ подвижностью. Из уравнения (43.13) следует

(43.15)

Подвижность пропорциональна среднему времени между столкновениями (редкие столкновения слабо тормозят S-молекулу) и обратно пропорциональна массе (чем больше инерция, тем медленнее набирается скорость между столкновениями).

Чтобы получить правильный численный коэффициент в уравнении (43.13) (а у нас он верен), нужна известная осторожность. Во избежание недоразумений нужно помнить, что мы используем коварные аргументы, и употреблять их можно только после осторожного и детального изучения. Чтобы показать, какие бывают трудности, хотя по виду вроде все благополучно, мы снова вернемся к тем аргументам, которые привели к выводу уравнения (43.13), но эти аргументы, которые выглядят вполне убедительно, приведут теперь к неверному результату (к сожалению, такого рода рассуждения можно найти во многих учебниках!).

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука