Любая физическая идея требует здравого смысла при своем осуществлении, ведь это не чисто математические или абстрактные идеи. Нужно понимать, что мы имеем в виду, когда говорим, что при перенесении какого-либо устройства в другое место наблюдаются те же явления. Под этим мы понимаем, что мы передвигаем все, что можно передвинуть. Если же при этом явление в чем-то изменяется, то мы предположим, что что-то послужило помехой, и займемся изучением причин. Если мы ничего не обнаружим, то объявим, что физические законы не обладают ожидаемой симметрией. Но если физические законы все-таки обладают симметрией, то мы найдем причину помех, во всяком случае мы надеемся найти ее. Осмотревшись, мы обнаружим, например, что работе машины мешает стена. Основной вопрос состоит в следующем: если мы достаточно хорошо изучим наши устройства, если все основные источники сил имеются внутри аппарата и если на другое место передвинуть все, что следовало передвинуть, то будут ли законы меняться? Будет ли машина на новом месте работать так, как раньше?
Ясно, что мы хотим передвинуть само устройство и источники
§ 2. Переносы начала
Мы ограничим наше рассмотрение законами механики, которую достаточно хорошо изучили. В предыдущих главах мы установили, что законы механики можно свести к трем справедливым для любой частицы уравнениям:
Это означает, что существует такой способ
Когда Джо определяет положение произвольной точки в пространстве, он находит три ее координаты:
Чтобы сделать наш анализ полным, нужно знать, какие силы измеряет Мик. Если сила действует вдоль произвольной линии, то под силой вдоль направления
Уравнения (11.2) и (11.3) определяют соотношения между величинами, используемыми Джо и Миком.
Теперь поставим вопрос так: если Джо знает законы Ньютона, то будут ли они верны, когда их попробует использовать Мик? Имеет ли значение выбор начала координат? Другими словами, предположим, что уравнения (11.1) верны, а (11.2) и (11.3) определяют соотношения между измеряемыми величинами; верно ли, что
Чтобы проверить эти уравнения, дважды продифференцируем выражение для
Предположим теперь, что начало системы координат, которой пользуется Мик, фиксировано (не движется) относительно системы координат Джо, т. е.
и, следовательно,
Если предположить, что измеряемые Джо и Миком массы равны, то уравнение (11.4а) принимает вид
Таким образом, произведения массы на ускорение одинаковы у обоих друзей. Можно получить и формулу для
Следовательно, законы механики, с точки зрения Мика, точно такие же: он пишет законы Ньютона в других координатах, и эти законы оказываются верными. Это означает, что центра Вселенной нет и законы движения выглядят одинаково, с какого бы места они ни наблюдались.