Читаем Том 18. Открытие без границ. Бесконечность в математике полностью

На горизонтальной оси откладывается время, на вертикальной — скорость.

Неравномерное движение описывается, например, уравнением v = 2t. Это означает, что с течением времени скорость возрастает: по прошествии одной секунды она равна 2, по прошествии двух секунд — 4 и т. д. Если в треугольнике АВС сторона АВ представляет пройденное время, сторона ВС — скорость, то пройденный путь будет равняться площади треугольника АВС. Галилея интересовало применение этого метода к более сложным разновидностям движения, например по параболической траектории, при этом неизбежно требовалось рассматривать кривые линии и площади фигур, ограниченных ими. В своих расчетах он использовал методы, схожие с методами Кеплера. Однако, как вы увидите чуть позже, его ученик Кавальери первым сформулировал рациональный метод для вычисления площадей подобных фигур.

Как мы уже говорили, Галилей неизбежно должен был столкнуться с парадоксами бесконечности и изучить ее природу. Именно так он пришел к парадоксу, который не смог разрешить. С формальной точки зрения эта задача даже не была парадоксом, но она содержала, как вы убедитесь чуть позже, возможное математическое определение бесконечности.

Эта задача-парадокс, которая впервые упоминается в диалогах Галилея в 1638 году, звучит так.

Рассмотрим в качестве исходного множества ряд чисел:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10….

Далее запишем ряд чисел, которые являются их квадратами:

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100….

Очевидно, что оба этих множества бесконечны в том смысле, что мы можем неограниченно добавлять к ним все новые и новые числа. Кроме того, Галилей заметил, что каждому элементу первого множества соответствует один из элементов второго, но, с другой стороны, кажется очевидным, что в первом множестве больше чисел, чем во втором. Вопрос, который поставил Галилей, заключается в том, какая бесконечность больше, первая или вторая, что ведет к кажущемуся парадоксу. Он полагал, что либо в чем-то ошибался, либо сравнения, основанные на понятиях «больше», «меньше» и «равно», неприменимы, когда речь идет о бесконечности.

В этом смысле он был прав, поскольку, как три столетия спустя доказал Георг Кантор, «арифметика бесконечного отлична от арифметики конечного».


Кавальери


Бонавентура Кавальери (1598–1647), иезуит и преподаватель математики в Болонье, был одним из учеников Галилея и больше всего интересовался вычислениями площадей и объемов. В 1635 году он опубликовал трактат на эту тему, озаглавленный «Геометрия, развитая новым способом при помощи неделимых непрерывного».

Название говорит само за себя: с одной стороны, Кавальери был сторонником принципа непрерывности, с другой — он был готов считать, что непрерывные объекты можно разделить на элементарные части — монады, подобные атомам, которые далее нельзя разделить на более мелкие части. Он полагал, что прямая состоит из точек, подобно тому, как ожерелье состоит из бусинок, а объемное тело — из плоскостей, точно так же, как книга — из страниц. Иными словами, неделимыми для прямой являются точки, неделимыми для плоскости — прямые, равноудаленные между собой, неделимыми для твердого тела — множество параллельных плоскостей, удаленных друг от друга на равное расстояние. Кавальери понимал, что число этих неделимых должно было быть бесконечным, но деликатно обходил этот вопрос. Более того, свой метод он назвал методом бесконечных, но работу озаглавил «Трактат о неделимых».

* * *

ТЕОРЕМА КАВАЛЬЕРИ

Метод, использованный Кавальери для вычисления объемов, можно наглядно объяснить так: представьте, что перед вами — две стопки монет или фишек казино одинаковой высоты. Сдвинем монеты во второй стопке так, что она перестанет иметь форму цилиндра. Вычислить объем полученной фигуры будет достаточно сложно. Тем не менее теорема Кавальери гласит, что объем обеих стопок одинаков. В этом примере каждая монета представляет собой неделимое.



По теореме Кавальери, объем обеих стопок монет одинаков, хотя в одном случае они уложены идеально ровно, в другом — нет.

* * *

Принцип Кавальери в современном виде формулируется так: если два тела имеют одинаковую высоту и площади их плоских сечений, взятых на одной высоте, равны, то объемы этих тел одинаковы.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука