ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ
С помощью интегралов можно рассчитывать не только площади плоских фигур, но также длины кривых, объемы тел, ограниченных произвольными поверхностями, и тел вращения. В общем случае интегралы позволяют найти любое значение, выраженное в виде бесконечной суммы бесконечно малых величин, то есть почти все что угодно. Сфера практического применения интегралов столь широка, что они образуют отдельный раздел прикладной математики. Вне зависимости от того, где выполняется вычисление интегралов, на маленьких калькуляторах или в мощных компьютерных программах, сложно представить инженера, которому не требовалось бы интегральное ис числение. В 1770 году швейцарский математик Леонард Эйлер
(1707–1783) создал трехтомный труд по интегральному исчислению. В некотором смысле все современные книги по математическому анализу являются всего лишь измененными и обновленными изданиями этого труда, в котором даже спустя 150 лет после публикации никто не смог найти ни единого недочета. По этой причине «Интегральное исчисление» Эйлера считается важнейшей работой по математическому анализу из когда-либо написанных.Исаак Ньютон (1643–1727), который считается скорее физиком, чем математиком, внес чрезвычайно важный вклад в создание математического анализа. Он разработал оригинальную систему решения задач о квадратурах и о спрямлении кривых. Для этого он использовал бесконечные ряды — выражения, которые определяются уравнением, первый член которого содержит изучаемую функцию, а второй — бесконечную сумму функций, имеющих схожее поведение. Например, первым членом следующего уравнения является логарифмическая функция, вторым — сумма бесконечного числа степенных функций, поведение которых известно:
* * *
ТАИНСТВЕННАЯ НАУКА
«Математические начала натуральной философии» Ньютона всегда считались непростыми для понимания — это неудивительно, если учесть, что Ньютон умышленно усложнил свою работу.
Как-то раз он признался другу, что поступил так, чтобы «избежать атак со стороны шарлатанов от математики»: предыдущие работы Ньютона, посвященные природе света, уже подвергались ожесточенной и не всегда оправданной критике. Некоторые из полученных результатов Ньютон и вовсе записал шифром. Следующая последовательность букв и цифр
6а сс d ае 13eff7i 31 9n4о 4q rr 4s 9t 12vx
отнюдь не сложный ключ или числа из компьютерной программы. Это так называемый логогриф — способ шифрования, который Ньютон использовал для описания своего метода анализа флюксий, чтобы Лейбниц не смог прочитать его записи и приписать их авторство себе. Говорят, что последнему понадобилось бы потратить на расшифровку так много сил, что быстрее было бы самостоятельно прийти к аналогичным результатам.
* * *