Читаем Том 18. Открытие без границ. Бесконечность в математике полностью

«Я вижу это, но я в это не верю», — писал Кантор Дедекинду в 1877 году, пытаясь объяснить эти взаимно однозначные соответствия между фигурами, имеющими разное число измерений. Кантор доказал положение, противоречащее любым интуитивным и математическим представлениям о размерности: все одномерные, двумерные и трехмерные объекты, с которыми он работал, содержали одно и то же число точек, равное .

Это было невероятно, и этот результат означал, что на любом, сколь угодно малом, отрезке содержится столько же точек, сколько во всей известной Вселенной. Внутри бесконечно малого оказалось заключено нечто бесконечно большое.

В действительности дело этим не ограничивается:  также равно числу точек в произвольном гиперпространстве. Иными словами, если бы мы могли проникать в пространства высших измерений (четырех-, пятимерные пространства и т. д.),  означало бы число точек, содержащихся в этих пространствах.


Трансцендентные числа


Вы увидели, что множества  (натуральных чисел),  (целых чисел) и  (рациональных чисел) содержат одинаковое число элементов (то есть являются равномощными) — бесконечное число, обозначенное Кантором как . Множество вещественных чисел получается, если расширить множество рациональных чисел иррациональными. Возникает вопрос: существует ли столько иррациональных чисел, чтобы общее количество вещественных чисел равнялось ?. Ответ на этот вопрос достаточно любопытен и не лишен таинственности. Однако чтобы понять его, сначала следует узнать о так называемых трансцендентных числах.

Уравнение одной переменной х степени n с рациональными коэффициентами — это равенство вида

Сnхn + Сn-1х n-1 +… + С1х + Сn = 0.

Тому, кто не знаком с подобными выражениями, оно может показаться сложным, но это не так. В этом контексте уравнение — не более чем равенство, в левой части которого записаны слагаемые с неизвестным х, возведенным в некоторую степень и умноженным на некие числа (коэффициенты), а в правой части записан ноль. Решить уравнение означает найти такое значение х, при котором уравнение обращается в верное равенство. Например, в уравнении

х 2 = 0

коэффициенты равны 1 и — 2, а решением является х = 2.

Иррациональное число, например √2, является результатом решения уравнения вида

х2 2 = 0.

По определению, число х является алгебраическим, если оно выступает корнем (решением) алгебраического уравнения с целыми коэффициентами. Проясним некоторые понятия, чтобы сделать это определение более понятным. Алгебраическое уравнение представляет собой многочлен, приравненный к нулю, например

Зх2 5х 1 = 0,

где 3, 5 и —1 — коэффициенты. Выражение

√Зх5 2 = 0

также является уравнением, но его первый коэффициент не является целым числом, следовательно, это уравнение нельзя назвать алгебраическим.

Число 3 является алгебраическим, так как оно выступает решением уравнения

х 3 = 0.

Очевидно, что любое рациональное число является алгебраическим, так как всегда можно записать алгебраическое уравнение, решением которого будет это число.

Как мы уже показали, √2 является решением уравнения х2 2 0, и, следовательно, это также алгебраическое число.

Если число не является алгебраическим, его называют трансцендентным. Этот термин, введенный Эйлером, происходит от латинского transcendere — «превосходить» и означает, что вычисление таких чисел в некотором роде выходит за рамки привычных математических операций. Доказать трансцендентность числа порой очень и очень непросто. Французский математик Жозеф Лиувилль (1809–1882) доказал существование трансцендентных чисел и открыл метод, позволяющий получить некоторые из них. Первым числом, которое удостоилось чести быть помещенным в список трансцендентных, стало (число Лиувилля), определение которого слишком сложно, чтобы приводить его здесь. Записывается оно следующим образом:

L = 0,1100010000000000000000010000…

В 1873 году французский математик Шарль Эрмит (1822–1901), ученик Лиувилля, доказал, что е (основание натурального логарифма, приближенное значение которого равно 2,718281828459043235360287471352…) не является алгебраическим числом. Получить это доказательство было непросто — оно не далось самому Эйлеру.

Одно из самых известных чисел в истории математики — это число π («пи»), равное отношению длины окружности к ее диаметру. Доказательство трансцендентности е оказалось столь сложным, что Эрмит не решился взяться за аналогичное доказательство для числа π, о чем написал Карлу Вильгельму Борхардту (1817–1880): «Я не осмелился приступить к доказательству трансцендентности числа π. Если кто-то другой попытается это сделать, не будет человека счастливее меня, но поверьте мне, любезный друг, что это доказательство потребует немалых усилий».

Трансцендентность числа π была доказана Линдеманом лишь несколько лет спустя, в 1882 году. Это открытие стало важной вехой в истории математики, так как означало невозможность решения задачи о квадратуре круга.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука