Читаем Том 18. Открытие без границ. Бесконечность в математике полностью

Как мы уже говорили, фундаментальным также является понятие подсчета элементов множества. При счете мы в действительности сравниваем элементы двух множеств. Например, если мы хотим узнать, сколько человек находится в помещении (то есть сколько элементов содержит множество людей, находящихся в помещении), мы берем за основу известное множество, образованное натуральными числами 1, 2, 3, …, и присваиваем каждому человеку в помещении порядковый номер без повторений. Закончив подсчет, мы смотрим, какое число мы присвоили последним. Если это число равно, например, 23, мы говорим, что в помещении находится 23 человека. В действительности мы сравнили два множества — множество людей и множество чисел {1, 2, 3, …, 22, 23}, установив так называемое взаимно однозначное соответствие. Взаимно однозначное соответствие можно установить между множествами разной природы, важно лишь, чтобы при этом соблюдались определенные правила. Например, если даны множество заглавных букв {А, F, H, P, V} и множество строчных букв {a, b, с, d, е}, то между ними можно установить следующее отношение:



Каждому элементу первого множества должен соответствовать один и только один элемент второго множества, и наоборот. Это единственное правило, которому должны подчиняться биективные, то есть взаимно однозначные отображения.

На рисунке ниже мы также видим соответствия:



Однако они не удовлетворяют этому правилу.

Таким образом, Кантор определил простейшее понятие подсчета, а также ввел понятие кардинальности множества.

Если мы рассмотрим множества, между которыми можно установить биективное отображение, то увидим, что число элементов в этих множествах одинаково.

Но если одно множество состоит из четырех элементов, а другое — из трех, между ними нельзя установить биективное отображение: какой-либо элемент остается без пары или какому-либо элементу будет сопоставлено сразу несколько элементов.

Кантор определил эквивалентность множеств следующим образом: «Кардинальность двух множеств одинакова, если между ними можно установить биективное (взаимно однозначное) отображение». О множествах с одинаковой кардинальностью говорят, что они являются равномощными, то есть имеют одинаковое число элементов.

Таким образом, если дано произвольное множество, например коробка цветных карандашей, которое мы обозначим А, и можно установить взаимно однозначное соответствие между множеством и множеством = {1, 2, 3, 4, 5, 6}, то говорят, что кардинальность А и одинакова:

|A| — |N| = 6.

Может показаться, что мы усложняем очевидное, но это впечатление обманчиво: новый логический аппарат позволил дать четкое определение бесконечному множеству.

Для этого сначала определим, что такое конечное множество. Непустое множество А (иными словами, содержащее как минимум один элемент) является конечным, если для некоторого числа n множество А имеет ту же кардинальность, что и множество {1, 2, 3, …, n}. Следовательно, будет числом элементов множества A. В противном случае говорят, что множество А бесконечное.

Аналогично: множество А бесконечно, если существует собственное подмножество В множества А, имеющее ту же кардинальность, что и само А. В противном случае множество А является конечным.

На последнем определении стоит остановиться подробнее ввиду его чрезвычайной важности. Во-первых, следует пояснить, что понимается под собственным подмножеством. Это очень просто: если дано произвольное множество А, например {a, b, с, d}, его собственным подмножеством будет любое подмножество, которое можно составить из элементов А, при этом нельзя использовать их все. Примерами собственных подмножеств А будут:

{а} {а, Ь} {а, b, с} {а, с, d} {d} {b, с, d}.

В соответствии с вышесказанным кажется логичным, что между множеством и его собственным подмножеством нельзя установить взаимно однозначное соответствие: собственное подмножество всегда будет содержать меньше элементов, чем само множество.

Но существуют примеры, когда это не так. Рассмотрим  — множество всех натуральных чисел и его собственное подмножество Р, образованное всеми четными числами. Очевидно, что между обоими множествами можно установить взаимно однозначное соответствие: для этого каждому натуральному числу n нужно поставить в соответствие это же число, умноженное на 2.

n —> 2n

В соответствии с этим

1 —> 2

2 —> 4

3 —> 6

Иными словами, каждому натуральному числу соответствует четное число и, напротив, каждому четному числу соответствует натуральное число. Это означает, что кардинальность этих множеств одинакова, и утверждение «существует столько же натуральных чисел, сколько четных» вовсе не парадокс, хотя оно явно противоречит интуиции. Таким образом, альтернативное определение бесконечного множества звучит так: множество является бесконечным, если между этим множеством и какой-либо из его частей (каким-либо его собственным подмножеством) можно установить взаимно однозначное соответствие.

В этом случае парадокс, сформулированный Галилеем (см. главу 3), — это уже не парадокс, а констатация факта: множество натуральных чисел является бесконечным.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука