Читаем Том 18. Открытие без границ. Бесконечность в математике полностью

Возможность представления функции в виде суммы тригонометрических функций синуса и косинуса обладает огромным преимуществом с точки зрения математики, так как для синуса и косинуса легко построить график, вычислить производную и интеграл. Фурье доказал, что любую периодическую функцию f(х) при соблюдении некоторых ограничений можно представить в виде бесконечной суммы функций синуса и косинуса. Тем не менее разложение в ряд Фурье ставит два важных вопроса, на которые непросто дать ответ, так как они затрагивают самые основы математического анализа и касаются теорем о существовании и единственности. Звучат эти вопросы так: во-первых, при каких условиях существует ряд, который действительно сходится к данной функции, и, во-вторых, если такой ряд действительно существует, является ли он единственно возможным?

В 1870 году Кантор сформулировал теорему, содержащую критерий сходимости ряда Фурье, в следующем году — вторую теорему, которая дополняла первую и касалась единственности ряда Фурье для данной функции. При этом Кантор столкнулся с проблемой: эта теорема не имела общего характера, и существовали точки, в которых она не выполнялась, причем таких точек было бесконечно много, и их множества перемежались с множествами точек, в которых теорема была верна. Так Кантор столкнулся с иррациональными числами. Встал вопрос, выходивший далеко за рамки разложения функции в ряд и за рамки понятия бесконечности. Кантор начал серьезно рассматривать взаимоотношения между непрерывным и дискретным на множестве вещественных чисел. С одной стороны, имелась прямая, на которой из чисто геометрических соображений точки распределялись непрерывно, с другой стороны, с арифметической точки зрения распределение этих точек было дискретным. Проблема заключалась в самом определении вещественного числа, точнее в определении иррационального числа (см. приложение «Множества чисел»).



Жан-Батист Жозеф Фурье.


Фундаментальные последовательности


Кантор разрабатывал свою теорию вещественных чисел в два этапа. В 1872 году в работе «О расширении теоремы, относящейся к теории тригонометрических рядов» он сформулировал задачу о существовании иррациональных чисел, но ему не удалось разработать полную и согласованную теорию. Четкое математическое определение вещественным числам ученый дал значительно позже, в своих «Основаниях общей теории множеств». По словам самого Кантора, он пришел к этому определению после глубоких философских размышлений о бесконечности и непрерывности. Математику были знакомы работы Коши и Вейерштрасса, и он знал, что на множестве рациональных чисел  существовали последовательности, не сходившиеся ни к какому рациональному числу. Речь шла о последовательностях, определенных Коши, элементы которых группировались друг вокруг друга, но не в окрестности какого-либо рационального числа. В главе 2 мы уже приводили пример бесконечного ряда, сходящегося к числу, которое не является рациональным — √2.

Мы также говорили, что элементы этих последовательностей могут располагаться сколь угодно близко друг к другу. Кантор назвал такие последовательности фундаментальными (в настоящее время они также называются последовательностями Коши).

Кантор чувствовал, что фундаментальные последовательности должны сходиться к иррациональному числу, и взял это за основу определения иррационального числа. Если продолжать аналогию, которую мы использовали в предыдущих главах, Кантор заметил скопления машин на автомагистрали и предположил, что причиной этому являются пункты оплаты — иными словами, существуют точки, в которых скапливаются определенные числовые последовательности и отсутствуют рациональные числа (это те самые промежутки на числовой прямой, о которых мы говорили выше). В таких точках должны находиться иррациональные числа, например √2, √3, √5 или даже π. Проблема заключалась в том, что иррациональным числам нужно было дать строгое определение на языке математики.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука