Читаем Том 18. Открытие без границ. Бесконечность в математике полностью

Согласно Аристотелю, бесконечного пространства не существует. Он считал, что бесконечное пространство может быть занято только бесконечно большим предметом, которого не существует. Этот мраморный бюст Аристотеля является римской копией с греческого оригинала, выполненного в бронзе Лисиппом в 330 г. до н. э.


Потенциальная и актуальная бесконечность


Предположим, что мы проводим на полу прямую линию так, что если мы сделаем шаг вперед, то перешагнем ее. Это потенциально возможное действие. Совершив его и оказавшись по другую сторону линии, мы сделали этот потенциал актуальным.

Существует четкая разница между потенциально возможным действием и действием совершенным. Например, может случиться так, что я захочу перешагнуть линию, но произойдет землетрясение и в полу образуется огромный разлом, который не позволит мне сделать этот шаг.

Мы говорим, что последовательность натуральных чисел 1, 2, 3, 4, … является бесконечной. Изначально это никто не подвергает сомнению, поскольку для любого числа n мы всегда можем получить следующее число n + 1, сколь бы велико ни было n. Однако одно дело — иметь возможность выполнить подобное действие, и совсем другое — совершить его в реальности и получить результат. Это очень тонкое различие. Возможность совершить действие определяет потенциальную бесконечность, а результат такого действия — актуальную бесконечность. Слова, обозначающие два различных типа бесконечности, не совсем удачны или, по меньшей мере, не до конца понятны. Возможно, более уместно (но также не совсем удобно) было бы называть потенциальную бесконечность теоретической, а актуальную — истинной бесконечностью.

Никто не может записать все целые числа — это неоспоримый факт. Так же верно, что никто никогда не видел две параллельные прямые, поскольку прямые бесконечны и мы можем видеть лишь их отрезки. Значит ли это, что параллельных прямых не существует? Они существуют настолько же, насколько существуют прямые вообще, но есть ли на самом деле бесконечная прямая? Евклид в своей известной книге «Начала» пытался рассматривать эту тему, поскольку, упоминая о прямых, он говорил об отрезках, чья длина может быть произвольно большой. Это весьма явная параллель с потенциальной бесконечностью.

Принятие актуальной бесконечности — не просто вопрос выбора, вкуса или предпочтений. Это нетривиальная философская задача. Следует учитывать, что в математике (ив науке вообще) до конца XIX века признавалось существование только потенциальной бесконечности. В философской школе Аристотеля был негласный запрет на использование актуальной бесконечности. «Невозможно чтобы бесконечность существовала в действительности как нечто сущее либо как субстанция и первоначало, — писал он и добавлял: — А что много невозможного получается, если вообще отрицать существование бесконечного, — [это тоже] очевидно», поскольку бесконечность «существует потенциально […] благодаря прибавлению или делению».

Так, по Аристотелю, отрезок нельзя рассматривать как бесконечное множество точек, выстроенных в линию, однако допускается деление отрезка пополам неограниченное число раз.

Мы задали перечисленные ниже вопросы о бесконечности обычному человеку, не имеющему специального математического или философского образования. Отвечать требовалось быстро, не раздумывая, в соответствии со «здравым смыслом», который является отражением наших культурных представлений.

* * *

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука