Читаем Том 18. Открытие без границ. Бесконечность в математике полностью

Как вы увидите далее, элементарная логика, или то, что порой называют интуицией, может обмануть, когда речь идет об актуальной бесконечности. Причина в том, что при рассмотрении некоторых понятий мы не до конца понимаем их и многое принимаем на веру. Трудности, возникающие у студентов-математиков при изучении актуальной бесконечности, сравнимы с трудностями, которые испытывают студенты-физики при изучении квантовой механики. Классический пример из квантовой механики выглядит так. Допустим, у нас есть ящик с двумя отверстиями, в котором находится шар. Если мы будем перемещать ящик произвольным образом, можно ожидать, что шар выпадет из него через одно из двух отверстий. При определенных перемещениях мы даже сможем вычислить вероятность того, что он выпадет через конкретное отверстие. Намного сложнее представить, что шар выпадет через оба отверстия одновременно. Но в квантовой физике такой вариант возможен, хотя он полностью противоречит интуиции. Речь не идет о том, чтобы понять это явление само по себе, так как всем известно, что означает: «шар выпадает через два отверстия сразу». Правильнее было бы сказать «я не верю» вместо «я не понимаю».

Нечто подобное происходит и с актуальной бесконечностью. Когда мы говорим, что крошечный отрезок прямой содержит бесконечное множество точек, мы понимаем, о чем идет речь. Другое дело, верим мы в это или нет.

* * *

«ИСЧИСЛЕНИЕ ПЕСЧИНОК» АРХИМЕДА

Слова для обозначения больших чисел (миллион, миллиард и т. д.) были введены французским математиком Никола Шюке (ок. 1445–1488) в 1484 году. Суффиксом — иллион он обозначал число М = 10 (в этой системе обозначений M1 — миллион, М2 — биллион, М3 — триллион и т. д.). В системах счисления древности очень большие числа обычно не рассматривались.

В древнегреческой системе счисления максимально возможным числом было 100 миллионов.

Архимед создал знаменитый трактат по арифметике под названием «Исчисление песчинок», в котором, помимо прочего, привел теоретические подсчеты общего числа песчинок на Земле. Его истинной целью было показать, что возможно создать систему счисления для подсчета объектов, которых, как может показаться, бесконечно много, но в действительности это не так.

Система Архимеда была основана на последовательных степенях мириады (Ω), равной 10000.

Максимально возможное число в этой системе счисления равнялось  — это очень и очень большое число. Неизвестно, почему Архимед остановился именно на нем, хотя никто не мешал ему двигаться дальше.

Глава 2. Дискретное и непрерывное

Противопоставление дискретного и непрерывного, которому уделяли внимание многие мыслители, восходит к трудам древнегреческих философов и до сих пор применяется в столь разных науках, как физика, математика, психология и лингвистика.


Плотность


В великих культурах Античности, особенно древнегреческой, числам придавалось метафизическое значение. Видение мира было неразрывно связано с применявшейся системой счисления. В контексте нашего обсуждения под числами мы обычно будем понимать натуральный ряд 1,2,3, …, поскольку дроби в древности считались не числами в современном смысле слова, а лишь отношениями между величинами или отношениями подобия между геометрическими фигурами. Здесь необходимо прояснить один аспект, напрямую связанный с бесконечностью: если все сущее можно выразить с помощью чисел, их должно быть достаточно много, чтобы ими можно было обозначить все, что нам уже известно и что еще предстоит узнать.

В этом смысле последовательность натуральных чисел нас полностью устраивает, так как ее можно продолжать бесконечно. Тем не менее последовательность дробных чисел обладает свойством, которое отсутствует у целых чисел и к которому древнегреческие математики относились с долей недоверия, а именно плотностью.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука