Функция f(x)
= 0,65х — это линейная возрастающая функция, или прямая пропорциональность.С увеличением независимой переменной х
зависимая переменная f(x) также возрастает. В случае с функцией, предложенной выше (сумма к уплате = стоимость за единицу товара • число единиц товара), число единиц товара не может принимать отрицательные значения, и часть графика, расположенная слева от 0, не имеет смысла. Существует множество других линейных функций.Каждая из них описывает особый тип связи между двумя переменными — х
и f(х), как, например, две убывающие линейные функции g(х) и h(х), графики которых представлены ниже.Функция i(х)
называется обратной пропорциональностью. В функциях такого типа при возрастании независимой переменной х значение зависимой переменной i(х) соответственно уменьшается. Например, когда х принимает значение 3, i(х) равняется 0,8/3 = 0,267.Также существуют полиномы второго порядка. Их графиками являются параболические кривые, как, например, график функции р(х)
, представленный на иллюстрации.Периодические функции широко используются при решении многих задач биржевого анализа.
* * *
Для различных объемов производства сплава составляется следующая таблица производства. Числовые данные в таблице соответствуют формуле, которую мы привели выше.
Любое изменение технологий предполагает изменение сочетания факторов производства и, как следствие, ведет к формированию новой таблицы производства с последующим изменением производственной функции. Каждому состоянию технологий соответствует график производства с кривыми, описывающими, как объем готовой продукции связан со значениями всех факторов, соответствующих данному состоянию технологий. Так, например, на графике внизу слева можно увидеть изменение сочетания факторов производства v1
и v2 соответствующих двум различным состояниям технологий А и В.С применением различных технологий для выпуска одного и того же объема продукции (например, 50 кг сплава) будут использоваться разные сочетания факторов производства.
Графики, иллюстрирующие выпуск одного и того же объема готовой продукции Q1
(величины Q1, Q2, Q3, Q4 на графике вверху справа), называются изоквантами — линиями равного выпуска.Каждая изокванта иллюстрирует различные сочетания факторов производства, позволяющие получить один и тот же объем готовой продукции Q1
. Например, объем выпуска Qt можно обеспечить сочетанием 420 единиц фактора v1 и 400 единиц фактора v2 либо сочетанием 810 единиц фактора v1 и 30 единиц фактора v2.В процессе производства возникают постоянные и переменные издержки, зависящие от объема произведенной продукции. Сумма постоянных и переменных издержек равна общим издержкам. Предельные издержки определяются как дополнительные затраты, связанные с увеличением выпуска готовой продукции на одну единицу:
Предельные издержки также выражаются производной функции издержек по объему продукции:
Для определенного объема выпуска значение производной равно тангенсу угла наклона касательной к кривой в точке А
, соответствующей этому объему выпуска.Средние издержки, или издержки на единицу продукции, определяются как результат деления общих издержек на число единиц произведенной продукции:
Например, при производстве 10 единиц продукта для каждой единицы можно рассчитать предельные и средние издержки.
На основе этих данных можно построить кривые всех издержек производства.