Читаем Том 2. Электромагнетизм и материя полностью

(2.6)

Мы будем также пользоваться следующими двумя равенствами:

(2.7)

(2.8)

Уравнение (2.7) справедливо, конечно, только при Δx, Δy и Δz→0.

Простейшее из физических полей — скалярное. Полем, как вы помните, называется величина, зависящая от положения в пространстве. Скалярное поле — это просто такое поле, которое в каждой точке характеризуется одним-единственным числом — скаляром. Это число, конечно, может меняться во времени, но пока мы на это не будем обращать внимания. (Речь будет идти о том, как поле выглядит в данное мгновение.) В качестве примера скалярного поля рассмотрим брусок из какого-то материала. В одних местах брусок нагрет, в других — остужен, так что его температура меняется от точки к точке каким-то сложным образом. Температура тогда будет функцией х, у и z — положения в пространстве, измеренного в прямоугольной системе координат. Температура — это скалярное поле.

Один способ представить себе скалярное поле — это вообразить «контуры», т. е. мысленные поверхности, проведенные через точки с одинаковыми значениями поля, подобно горизонталям на картах, соединяющим точки на одной высоте над уровнем моря. Для температурного поля контуры носят название «изотермические поверхности», или изотермы. На фиг. 2.1 показано температурное поле и зависимость Т от х и у при z=0. Проведено несколько изотерм.

Фиг. 2.1. Температура Т — пример скалярного поля. С каждой точкой (х, у, z) в пространстве связывается число Т(х, у, z). Все точки на поверхности с пометкой Т=20° (изображенной в виде кривой при z=0) имеют одну и ту же температуру. Стрелки — это примеры вектора потока тепла h.

Поля бывают также векторными. Идея их очень проста. В каждой точке пространства задается вектор. Он меняется от точки к точке. Рассмотрим в виде примера вращающееся тело. Скорость материала тела во всякой точке — это вектор, который является функцией ее положения (фиг. 2.2).

Фиг. 2.2. Скорости атомов во вращающемся теле — пример векторного поля.

Другой пример — поток тепла в бруске из некоторого материала. Если в одной части бруска температура выше, а в другой — ниже, то от горячей части к холодной будет идти поток тепла. Тепло в разных частях бруска будет растекаться в различных направлениях. Поток тепла — это величина, имеющая направление; обозначим ее h; длина этого вектора пусть измеряет количество протекающего тепла. Векторы потока тепла также изображены на фиг. 2.1.

Определим теперь h более точно. Длина вектора потока тепла в данной точке — это количество тепловой энергии, проходящее за единицу времени и в пересчете на единицу площади сквозь бесконечно малый элемент поверхности, перпендикулярный к направлению потока. Вектор указывает направление потока (фиг. 2.3).

Фиг. 2.3. Тепловой поток — векторное поле. Вектор h указывает направление потока. Абсолютная величина его выражает энергию, переносимую за единицу времени через элемент поверхности, ориентированный поперек потока, деленную на площадь элемента поверхности.

В буквенных обозначениях: если ΔJ — тепловая энергия, протекающая за единицу времени сквозь элемент поверхности Δа, то

(2.9)

где еfединичный вектор направления потока Вектор h можно определить и иначе — через его компоненты. Зададим себе вопрос, сколько тепла протекает через малую поверхность под произвольным углом к направлению потока. На фиг. 2.4 мы изобразили малую поверхность Δa2 под некоторым углом к поверхности Δat, которая перпендикулярна к потоку.

Фиг. 2.4. Тепловые потоки сквозь Aа2и сквозь Aa1одинаковы.

Единичный векторn перпендикулярен к поверхности Δа2. Угол θ между n и h равен углу между поверхностями (так как h — нормаль к Δa1). Чему теперь равен поток тепла через Δа2 на единицу площади? Потоки сквозь Δа2 и Δа1 равны между собой, отличаются только площади. Действительно, Δа1=Δа2cosθ. Поток тепла через Δа2 равен

(2.10)

Поясним это уравнение: поток тепла (в единицу времени и на единицу площади) через произвольный элемент поверхности с единичной нормалью n равен h·n. Можно еще сказать так: компонента потока тепла, перпендикулярная к элементу поверхности Δа2, равна h·n. Можно, если мы хотим, считать эти утверждения определением h. Сходные идеи мы применим и к другим векторным полям.

<p><strong>§ 3. Производные полей — градиент</strong></p>
Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука