Но перед нами все еще стоит такая проблема: чему равен средний квадратичный радиус
Такой же диамагнитный эффект будет наблюдаться даже у атомов с постоянным магнитным моментом. При этом система тоже будет прецессировать в магнитном поле. Во время прецессии атома в целом он набирает небольшую дополнительную угловую скорость, а подобное медленное вращение приводит к маленькому току, который дает поправку к магнитному моменту. Это тот же диамагнитный эффект, но поданный по-другому. Однако на самом деле, когда мы говорим о парамагнетизме, нам не нужно заботиться об этой добавке. Если мы сначала подсчитали диамагнитный эффект, как это было сделано здесь, нас не должен беспокоить небольшой дополнительный ток, происходящий из-за прецессии. Он уже включен нами в диамагнитный член.
§ 5. Теорема Лармора
Теперь уже из наших результатов можно сделать кое-какие заключения. Прежде всего в классической теории момент μ всегда пропорционален J
, причем для каждого вида атомов со своей константой пропорциональности. В классической теории у электрона нет никакого спина и константа пропорциональности всегда равна -Мне бы хотелось показать вам, как можно доказать эту теорему, но детали доказательства я предоставлю вам самим.
Возьмем сначала электрон в центральном силовом поле. На него просто действует направленная к центру сила F
(Посмотрим теперь на те же самые электроны из системы координат, вращающейся с угловой скоростью ω относительно оси, проходящей через центр силы и параллельной полю В
. Она уже не будет инерциальной системой, а посему нам нужно добавить надлежащие псевдосилы: центробежные силы и силы Кориолиса, о которых мы говорили в гл. 19 (вып. 2). Там мы обнаружили, что в системе отсчета, вращающейся с угловой скоростью ω, действуют кажущиеся