Читаем Том 2. Электромагнетизм и материя полностью

Таким образом, индуктивность пропорциональна μ. Если вам нужна индуктивность для таких устройств, как звуковые усилители, то желательно иметь материал, у которого связь между В и Н достаточно линейна. [Вы, должно быть, помните, что в гл. 50 (вып. 4) мы говорили о генерации гармоник в нелинейных системах.] Для таких задач уравнение (36.23) будет очень хорошим приближением. С другой стороны, если нужно генерировать гармоники, то используют индуктивности, ведущие себя в высшей степени нелинейно. При этом вы должны пользоваться сложной кривой НВ и применять при вычислениях графические или численные методы.

В обычных «трансформаторах» на одном и том же торе, или сердечнике, из магнитного материала намотаны две катушки. (В больших трансформаторах сердечник для удобства делается прямоугольным.) При этом изменение тока в «первичной» обмотке вызывает изменение поля в сердечнике, которое индуцируется э.д.с. во «вторичной» обмотке. Поскольку поток через каждый виток обеих обмоток один и тот же, то величина отношения э.д.с. в этих двух обмотках такая же, как отношение числа витков в каждой из них. Напряжение, приложенное к первичной обмотке, преобразуется во вторичной в напряжение другой величины. А поскольку для создания требуемых изменений магнитного поля необходим определенный полный ток, то алгебраическая сумма токов в двух обмотках должна оставаться постоянной и равной требуемому «намагничивающему» току. При изменении напряжения изменяется и сила тока в обмотках, т. е. вместе с преобразованием напряжения происходит и преобразование тока.

§ 5. Электромагниты

Поговорим теперь о практической стороне дела, которая немного более сложна. Предположим, что мы имеем электромагнит стандартной формы, изображенный на фиг. 36.10.

Фиг. 36.10. Электромагнит.


Он состоит из С-образного железного ярма, на которое намотано много витков провода. Чему равно магнитное поле В в зазоре?

Если ширина зазора мала по сравнению со всеми другими размерами, то в качестве первого приближения мы можем считать, что линии В образуют замкнутые кривые так же, как это происходит и в обычном торе. Они выглядят примерно так, как показано на фиг. 36.11,а.

Фиг. 36.11. Поперечное сечение электромагнита.


Они стремятся вылезть из зазора, но если он узок, то эффект этот очень мал. Предположение о постоянстве потока В через любое поперечное сечение ярма будет довольно хорошим приближением. Если поперечное сечение ярма меняется равномерно и если мы пренебрежем любыми краевыми эффектами на зазоре или на углах, то можно говорить, что по всей окружности ярма В однородно.

Поле В в зазоре будет по величине тем же самым. Это следует из уравнений (36.16). Представьте себе замкнутую поверхность S (см. фиг. 36.11,б), одна грань которой находится в зазоре, а другая — в железе. Полный поток поля В через эту поверхность должен быть равен нулю. Обозначая через В1 величину поля в зазоре, а через B2 — величину поля в железе, мы видим, что

а поскольку А1=А2, то отсюда следует, что В1=В2.

Посмотрим теперь на Н. Мы снова можем воспользоваться уравнением (36.19), взяв криволинейный интеграл по контуру Г (см. фиг. 36.11,б). Как и прежде, правая часть равна NI— произведению числа витков на ток. Однако теперь Н в железе и в воздухе будет различным. Обозначая через Н2 поле в железе, а через l2 — длину пути по окружности ярма, мы видим, что эта часть кривой дает вклад в интеграл H2l2. Если же поле в зазоре равно Н1, а ширина его l1, то вклад зазора оказывается равным H1l1. Таким образом, получаем

(36.26)

Но это еще не все. Нам известно еще, что намагниченность в воздушной щели пренебрежимо мала, так что B1=H1. А так как B1=B2, то уравнение (36.26) принимает вид

(36.27)

Остаются еще два неизвестных. Чтобы найти В2 и H2, необходимо еще одно соотношение, которое связывает В с H в железе.

Если можно приближенно считать, что B2H2, то уравнение разрешается алгебраически. Рассмотрим более общий случай, для которого кривая намагничивания железа имеет вид, изображенный на фиг. 36.8. Единственное, что нам нужно, — это найти совместное решение этого функционального соотношения с уравнением (36.27). Его можно найти, строя зависимость (36.27) на одном графике с кривой намагничивания, как это сделано на фиг. 36.12. Точки, где эти кривые пересекутся, и будут нашими решениями.

Для данного тока I уравнение (36.27) описывается прямой линией, обозначенной I>0 на фиг. 36.12. Эта линия пересекает ось Н (B2=0) в точке H2=NI0c2l2 и имеет наклон -l2/l1 Различные величины токов приводят просто к горизонтальному сдвигу этой линии. Из фиг. 36.12 мы видим, что при данном токе существует несколько различных решений, зависящих от того, каким образом вы получили их.

Фиг. 36.12. Определение поля в электромагните.


Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука