Читаем Том 2. Электромагнетизм и материя полностью

С другой стороны, для дискообразной полости, перпендикулярной М,

что в нашем случае превращается в

или в величинах В:

(36.34)

Наконец, для сферической полости аналогия с уравнением (36.3) дала бы

(36.35)

Результаты для магнитного поля, как видите, отличаются от тех, которые мы имели для электрического поля.

Конечно, их можно получить и более физически, непосредственно используя уравнения Максвелла. Например, уравнение (36.34) непосредственно следует из уравнения ·B=0. (Возьмите гауссову поверхность, которая наполовину находится в материале, а наполовину — вне его.) Подобным же образом вы можете получить уравнение (36.33), воспользовавшись контурным интегралом по пути, который туда идет по полости, а назад возвращается через материал. Физически поле в полости уменьшается благодаря поверхностным токам, определяемым как ×М. На вашу долю остается показать, что уравнение (36.35) можно получить, рассматривая эффекты поверхностных токов на границе сферической полости.

При нахождении равновесной намагниченности из уравнения (36.29) удобнее, оказывается, иметь дело с Н, поэтому мы пишем

(36.36)

В приближении сферической полости коэффициент λ следует взять равным 1/3, но, как вы увидите позже, нам придется пользоваться несколько другим его значением, а пока оставим его как подгоночный параметр. Кроме того, все поля мы возьмем в одном и том же направлении, чтобы нам не нужно было заботиться о направлении векторов. Если бы теперь мы подставили уравнение (36.36) в (36.29), то получили бы уравнение, которое связывает намагниченность М с намагничивающим полем Н:

Однако это уравнение невозможно решить точно, так что мы будем делать это графически.

Сформулируем задачу в более общей форме, записывая уравнение (36.29) в виде

(36.37)

где Мнас — намагниченность насыщения, т. е. Nμ, а x — величина μBa/kT. Зависимость М/Мнас от х показана на фиг. 36.13 (кривая а).

Фиг. 36.13. Графическое решение уравнений (36.37) и (36.38),


Воспользовавшись еще уравнением (36.36) для Ва, можно записать х как функцию от М:

(36.38)

Эта формула определяет линейную зависимость между М/Мнас и х при любой величине Н. Прямая пересекается с осью х в точке xH/kT, и наклон ее равен ε0с2kT/μλМнас. Для любого частного значения Н это будет прямая, подобная прямой b на фиг. 36.13. Пересечение кривых а и о дает нам решение для М/Мнас. Итак, задача решена.

Посмотрим теперь, годны ли эти решения при различных обстоятельствах. Начнем с H=0. Здесь представляются две возможности, показанные кривыми b1 и b2 на фиг. 36.14.

Фиг. 36.14. Определение намагниченности при Н=0.


Обратите внимание, что наклон прямой (36.38) пропорционален абсолютной температуре Т. Таким образом, при высоких температурах получится прямая, подобная b1 Решением будет только М/Мнас=0. Иначе говоря, когда намагничивающее поле Я равно нулю, намагниченность тоже равна нулю. При низких температурах мы получили бы линию типа b2 и стали возможны два решения для М/Мнас: одно М/Мнас=0, а другое М/Мнас порядка единицы. Оказывается, что только второе решение устойчиво, в чем можно убедиться, рассматривая малые вариации в окрестности указанных решений.

В соответствии с этим при достаточно низких температурах магнитные материалы должны намагничиваться спонтанно. Короче говоря, когда тепловое движение достаточно мало, то взаимодействие между атомными магнитиками заставляет их выстраиваться параллельно друг другу, получается постоянно намагниченный материал, аналогичный постоянно поляризованным сегнетоэлектрикам, о которых мы говорили в гл. 11 (вып. 5).

Если мы отправимся от высоких температур и начнем двигаться вниз, то при некой критической температуре, называемой температурой Кюри Тc, неожиданно проявляется ферромагнитное поведение. Эта температура соответствует на фиг. 36.14 линии b3, касательной к кривой а, наклон которой равен единице. Так что температура Кюри определяется из равенства

(36.39)

При желании уравнение (36.38) можно записать в более простом виде через Тc:

(36.40)

Что же получается для малых намагничивающих полей Н? Из фиг. 36.14 нетрудно понять, что получится, если нашу прямую линию сдвинуть немного направо. В случае низкой температуры точка пересечения немного сдвинется направо по слабо наклоненной части кривой а и изменения М будут сравнительно невелики. Однако в случае высокой температуры точка пересечения побежит по крутой части кривой а и изменения М станут относительно быстрыми. Эту часть кривой мы фактически можем приближенно заменить прямой линией а с единичным наклоном и написать

Теперь можно разрешить уравнение относительно М/Мнас:

(36.41)

Мы получаем закон, несколько напоминающий закон для парамагнетизма:

(36.42)

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука