Читаем Том 2. Электромагнетизм и материя полностью

Две константы Y и σ полностью определяют упругие свойства однородного изотропного (т. е. некристаллического) материала. В кристаллическом материале растяжение и сокращение в разных направлениях может быть различным, поэтому и упругих постоянных может быть гораздо больше. Временно мы ограничим наши обсуждения однородными изотропными материалами, свойства которых могут быть описаны постоянными σ и Y. Как обычно, существует множество способов описания свойств.

Некоторым, например, нравится описывать упругие свойства материалов другими постоянными. Но таких постоянных всегда берется две, и они могут быть связаны с нашими σ и Y.

Последний общий закон, который нам нужен, — это принцип суперпозиции. Поскольку оба закона (38.4) и (38.5) линейны в отношении сил и перемещений, то принцип суперпозиции будет работать. Если при одном наборе сил вы получаете некоторое дополнительное перемещение, то результирующее перемещение будет суммой перемещений, которые бы получились при независимом действии этих наборов сил.

Теперь мы имеем все необходимые общие принципы: принцип суперпозиции и уравнения (38.4) и (38.5), т. е. все, что нужно для описания упругости. Впрочем, с таким же правом можно было заявить: у нас есть законы Ньютона, и это все, что нужно для механики. Или, задавшись уравнениями Максвелла, мы имеем все необходимое для описания электричества. Оно, конечно, так; из этих принципов вы действительно можете получить почти все, ибо ваши теперешние математические возможности позволяют вам продвинуться достаточно далеко. Но мы все же рассмотрим лишь некоторые специальные приложения.

§ 2. Однородная деформация

В качестве первого примера посмотрим, что происходит с прямоугольным бруском при однородном гидростатическом сжатии. Давайте поместим брусок в резервуар с водой. При этом возникнет сила, действующая на каждую грань бруска и пропорциональная его площади (фиг. 38.2).

Фиг. 38.2. Брусок под действием равномерного гидростатического давления.


Поскольку гидростатическое давление однородно, то напряжение (сила на единичную площадь) на каждой грани бруска будет одним и тем же. Прежде всего найдем изменение длины бруска. Его можно рассматривать как сумму изменений длин, которые происходили бы в трех независимых задачах, изображенных на фиг. 38.3.

Фиг. 38.3. Гидростатическое давление равно суперпозиции трех сжатий.


Задача1. Если мы приложим к концам бруска давление р, то деформация сжатия будет отрицательна и равна p/Y:

Задача2. Если мы надавим на горизонтальные грани бруска, то деформация по высоте будет равна -p/Y, а соответствующая деформация в боковом направлении будет +σp/Y. Мы получаем

Задача3. Если мы приложим к сторонам бруска давление р, то деформация давления снова будет равна p/Y, но теперь нам нужно определить деформацию длины. Для этого боковую деформацию нужно умножить на -σ. Боковая деформация равна

так что

Комбинируя результаты этих трех задач, т. е. записывая Δl как Δl1+Δl2+Δl3, получаем

(38.6)

Задача, разумеется, симметрична во всех трех направлениях, поэтому

(38.7)

Интересно также найти изменение объема при гидростатическом давлении. Поскольку V=lwh, то для малых перемещений можно записать

Воспользовавшись (38.6) и (38.7), мы имеем

(38.8)

Имеются любители называть ΔV/V объемной деформацией и писать

Объемное напряжение р (гидростатическое давление) пропорционально вызванной им объемной деформации — снова закон Гука. Коэффициент К называется объемным модулем и связан с другими постоянными выражением

(38.9)

Поскольку коэффициент К представляет некоторый практический интерес, то во многих справочниках вместо Y и σ приводятся Y и К. Но если вам нужно знать σ, то вы всегда можете получить это значение из формулы (38.9). Из этой формулы видно также, что коэффициент Пуассона σ должен быть меньше 1/2. Если бы это было не так, то объемный модуль К был бы отрицательным и материал при увеличении давления расширялся бы. Это позволило бы добывать механическую энергию из любого кубика, т. е. это означало бы, что кубик находится в неустойчивом равновесии. Если бы он начал расширяться, то расширение продолжалось бы само по себе с высвобождением энергии.

Посмотрим, что получится, если мы приложим к чему-то «косое» напряжение. Под косым, или скалывающим, напряжением мы подразумеваем такое воздействие, как показано на фиг. 38.4.

Фиг. 38.4. Однородный сдвиг.


В качестве предварительной задачи посмотрим, какова будет деформация кубика под действием сил, показанных на фиг. 38.5.

Фиг. 38.5. Действие сжимающих сил, давящих на вершину и основание, и равных им растягивающих сил с двух сторон.


Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука