Это можно усмотреть из следующих общих рассуждений. Тензор напряжений S
ij должен быть связан с eij способом, который совершенно не зависит от направления осей координат, т. е. он должен быть связан только с помощью скалярных величин. «Это очень просто», — скажете вы. «Единственный способ получить Sij из eij — умножить последнее на скалярную постоянную. Получится как раз закон Гука: Sij=(Постоянная)×еij». Однако это не совсем верно. Дополнительно здесь можно вставить единичный тензор δij, умноженный на некоторый скаляр, линейно связанный с еij. Единственный инвариант, который можно составить и который линеен по е, — это ∑eij. (Он преобразуется подобно х2+y2+z2, а значит является скаляром.) Таким образом, наиболее общей формой уравнения, связывающего Sij с eij для изотропного материала, будет (39.20)
(Первая константа обычно записывается как 2μ; при этом коэффициент μ равен модулю сдвига, определенному нами в предыдущей главе.) Постоянные μ, и λ называются упругими постоянными Лямэ
. Сравнивая уравнения (39.20) с уравнением (39.12), вы видите, что (39.21)
Таким образом, мы доказали, что уравнение (39.19) действительно правильное. Вы видите также, что упругие свойства изотропного материала, как уже говорилось в предыдущей главе, полностью задаются двумя постоянными.
Коэффициенты С
могут быть выражены через любые две из упругих постоянных, которые использовались ранее, например через модуль Юнга Y и отношение Пуассона σ. На вашу долю оставляю показать, что (39.22)
§ 3. Движения в упругом теле
Мы подчеркивали, что в упругом теле, находящемся в равновесии
, внутренние напряжения распределяются так, чтобы энергия была минимальной. Посмотрим теперь, что происходит, если внутренние силы не уравновешены. Возьмем маленький кусочек материала внутри некоторой поверхности А (фиг. 39.5).
Фиг. 39.5. Маленький элемент объема V, ограниченный поверхностью А,
Если этот кусочек находится в равновесии, то полная действующая на него сила F
должна быть равна нулю. Можно считать, что эта сила состоит из двух частей, одна из которых обусловлена «внешними» силами, подобными гравитации, действующими на расстоянии на вещество нашего кусочка и приводящими к величине силы на единицу объема fвнешн. Полная же внешняя сила Fвнешн равна интегралу от fвнешн по всему объему кусочка: (39.23)
В равновесии эти силы балансируются полной силой F
внутр, действующей по поверхности А со стороны окружающего материала. Когда же этот кусочек не находится в равновесии, а движется, сумма внутренних и внешних сил будет равна произведению массы на ускорение. При этом мы получаем (39.24)
где ρ—плотность материала, а ..
r — его ускорение. Теперь мы можем скомбинировать уравнения (39.23) и (39.24) и написать (39.25)
Нашу запись можно упростить, положив
(39.26)
Тогда уравнение (39.25) запишется в виде
(39.27)
Величина, названная нами F
внутр, связана с напряжениями в материале. Тензор напряжений Sij был определен нами в гл. 31 таким образом, что x-компонента силы dF, действующей на элемент поверхности da с нормалью n, задается выражением (39.28)
Отсюда х-компонента силы F
внутр, действующей на наш кусочек, равна интегралу от dFx по всей поверхности. Подставляя это в x-компоненту уравнения (39.27), получаем (39.29)
Оказалось, что поверхностный интеграл связан с интегралом по объему, а это напоминает нам нечто знакомое по главам об электричестве. Заметьте, что если не обращать внимания на первый значок х в
каждом из S в левой части (39.29), то она выглядит в точности как интеграл от величины (S·n), т.е. нормальной компоненты вектора по поверхности. Она была бы равна потоку S через объем. А используя теорему Гаусса, поток можно было бы записать в виде объемного интеграла от дивергенции S. На самом деле все это справедливо независимо от того, есть ли у нас индекс х или нет. Это просто математическая теорема, которая доказывается интегрированием по частям. Другими словами, уравнение (39.29) можно превратить в (39.30)
Теперь можно отбросить интегралы по объему и написать дифференциальное уравнение для любой компоненты f
: (39.31)
Оно говорит нам, как связана сила, действующая на единицу объема с тензором напряжения S
ij.