Читаем Том 2. Электромагнетизм и материя полностью

Если мы отбросим fвязк, то в уравнении (40.4) все нам известно, за исключением выражения для ускорения. Может показаться, что формула для ускорения частиц жидкости должна быть очень простой, ибо очевидно, что если v — скорость частицы в некотором месте жидкости, то ускорение ее будет просто равно ∂v/∂t. Но это совсем неверно, и по довольно хитрой причине. Производная ∂v/∂t выражает изменение скорости v(х, у, z, t) в фиксированной точке пространства. А нам нужно знать, как изменяется скорость данной капельки жидкости. Представьте, что мы пометили одну капельку воды цветной краской и можем наблюдать за ней. За маленький интервал времени Δt эта капелька продвинется в другое положение. Если капелька движется по некоторому пути, изображенному на фиг. 40.4, то за промежуток Δt она из точки Р1 переместится в точку Р2.

Фиг. 40.4. Ускорение частицы жидкости.


Фактически в направлении оси х она передвинется на расстояние vxΔt, в направлении оси у — на расстояние vуΔt, а в направлении оси z — на расстояние vzΔt. Мы видим, что если v(х, у, z, t) — скорость частицы в момент t, то скорость той же самой частицы в момент tt представляет величину v (х+Δx, уy, z+Δz, tt), причем

Из определения частных производных [вспомните уравнения гл. 2, вып. 5] мы с точностью до членов первого порядка получаем

Ускорение же Δvt будет равно

Считая вектором, это можно записать символически:

(40.5)

Обратите внимание, что, даже когда ∂v/∂t=0, т. е. когда скорость в данной точке не изменяется, ускорение все же останется. Примером может служить вода, текущая с постоянной скоростью по кругу: она ускоряется даже тогда, когда скорость в данной точке не изменяется. Причина, разумеется, состоит в том, что скорость данной капельки воды, которая первоначально находилась в одной точке, моментом позднее будет иметь другое направление — это центростремительное ускорение.

Остальная часть нашей теории — чисто математическая: нахождение решения уравнения движения, полученного подстановкой ускорения (40.5) в (40.4), т. е.

(40.6)

где слагаемое с вязкостью уже выброшено. Воспользовавшись известным тождеством из векторного анализа, это уравнение можно переписать по-другому:

Если определить новое векторное поле Ω как ротор скорости v, т. е.

(40.7)

то векторное тождество можно записать так:

а наше уравнение движения (40.6) примет вид

(40.8)

Вы можете проверить эквивалентность уравнений (40.6) и (40.8), расписывая их по компонентам и сравнивая их, воспользовавшись при этом выражением (40.7).

Если Ω всюду равно нулю, то такой поток мы называем безвихревым (или потенциальным). В гл. 3, § 5 (вып. 5), мы уже определяли величину, называемую циркуляцией векторного поля. Циркуляция по любой замкнутой петле в жидкости равна криволинейному интегралу от скорости жидкости в данный момент времени вокруг этой петли:

Циркуляция на единицу площади для бесконечно малой петли по теореме Стокса будет тогда равна ×v. Таким образом, Ω представляет собой циркуляцию вокруг единичной площади (перпендикулярной направлению Ω). Кроме того, ясно, что если в любое место жидкости поместить маленькую соринку (именно соринку, а не бесконечно малую точку), то она будет вращаться с угловой скоростью Ω/2. Попытайтесь доказать это. Вы можете также попробовать доказать, что для ведра воды на вращающемся столике Ω равна удвоенной локальной угловой скорости воды.

Если нас интересует только поле скоростей, то из наших уравнений можно исключить давление. Взяв ротор обеих частей уравнения (40.8) и вспомнив, что ρ — величина постоянная, а ротор любого градиента равен нулю, а также использовав уравнение (40.3), находим

(40.9)

Это уравнение вместе с уравнениями

(40.10)

и

(40.11)

полностью описывают поле скоростей v. На языке математики — если в некоторый момент мы знаем Ω, то мы знаем ротор вектора скорости и, кроме того, знаем, что его дивергенция равна нулю, так что в этих физических условиях у нас есть все необходимое для определения скорости v повсюду. (Все это в точности напоминает нам знакомые условия в магнетизме, где ∇·B=0 и ∇×B=j0c2.) Таким образом, данная величина Ω определяет v точно так же, как j определяет В. Затем из известного значения v уравнение (40.9) даст нам скорость изменения Ω, откуда мы можем получить новую Ω в следующий момент. Используя снова уравнение (40.10), найдем новое значение v и т. д. Теперь вы видите, как в эти уравнения входит весь механизм, необходимый для вычисления потока. Заметьте, однако, что эта процедура дает только скорости, а всю информацию о давлении мы потеряли.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука