Мне бы хотелось подчеркнуть, что ни один из описанных нами потоков ни в каком отношении не похож на решение уравнения потенциального потока, о котором говорилось в предыдущей главе. На первый взгляд это очень удивительно. Ведь ℛ в конце концов пропорционально 1/η. Так что предел η→0 эквивалентен пределу ℛ→∞. И если мы перейдем к пределу больших ℛ в (41.23), то избавимся от правой части и получим как раз уравнения из предыдущей главы. Но все же трудно поверить, что сильно турбулентный поток с ℛ=107
хоть в какой-то степени приближается к гладкому потоку, вычисленному из уравнений «сухой» воды. Как может случиться, что при ℛ=∞ поток, описываемый уравнением (41.23), дает решение, полностью отличное от решения, полученного при η=0, с которого мы начали? Ответ очень интересен. Обратите внимание, что в правой части (41.23) стоит произведение 1/ ℛ наВас может удивить: «Что же такое мелкомасштабная турбулентность и как она может поддерживать сама себя? Как завихренность, которая создается где-то на краях цилиндра, приводит к такому шуму позади него?». Ответ снова очень интересен. Завихренность имеет тенденцию к самоусилению. Если мы на минуту забудем о диффузии завихренности, которая обусловливает потери, то законы потока говорят (как мы уже видели), что линии вихря переносятся вместе с жидкостью со скоростью v. Представьте себе некоторое количество линий Ω, которые возмущаются и скручиваются очень сложной картиной скоростей потока v. Прежде простые линии спутаются и сожмутся. Величина завихренности будет возрастать, равно как и ее нерегулярности (положительные и отрицательные), которые, вообще говоря, тоже будут увеличиваться. Таким образом, завихренность в трех измерениях по мере перемешивания жидкости будет возрастать.
Вы можете также спросить: «Когда же в конце концов справедлива теория потенциального потока?» Прежде всего она удовлетворительна вне турбулентной области, куда проникновение завихренности из-за диффузии незначительно. Изготовляя специальные обтекаемые тела, мы стараемся сделать область турбулентности как можно меньше. Поток, обтекающий крылья самолета, которые имеют специальную рассчитанную форму, — почти настоящий потенциальный поток.
§ 6. Поток Куеттэ
Можно показать, что сложный и изменчивый характер потока мимо цилиндра не исключение и что такое разнообразие возможностей получается и в общем случае. В § 1 мы нашли решение для вязкой жидкости между двумя цилиндрами и можем сравнить эти результаты с тем, что получается на самом деле. Если мы возьмем два концентрических цилиндра и заполним пространство между ними маслом с добавленной в него мелкой алюминиевой пудрой, то поток можно легко наблюдать. Если начнем медленно вращать внешний цилиндр, то ничего неожиданного не произойдет (фиг. 41.8,
Можно медленно вращать и внутренний цилиндр, все равно ничего потрясающего не будет. А вот если мы начнем очень быстро вращать внутренний цилиндр — случится нечто удивительное. Жидкость разобьется на горизонтальные полосы (фиг. 41.8,
Когда внутренние слои жидкости движутся быстрее, чем внешние, они стремятся двигаться наружу: центробежная сила становится больше удерживающего давления. Но весь слой целиком не может двигаться равномерно, так как на его пути стоят внешние слои. Поэтому они разбиваются на клетки и циркулируют, как показано на фиг. 41.9,