В наших новых переменных производные в уравнении (41.18) тоже изменятся: так, ∂/∂
А наше основное уравнение (41.17) перейдет в
Все постоянные при этом собираются в один множитель, который мы, следуя традиции, обозначим через 1/ℛ:
Если теперь мы просто запомним, что все наши уравнения должны выписываться для величин, измеряемых в новых единицах, то все штрихи можно опустить. Тогда уравнения для потока примут вид
и
с условиями,
для
и
Что все это значит? Если, например, мы решили задачу для потока с одной скоростью V1
и некоторого цилиндра диаметромВ любых случаях, когда числа Рейнольдса одинаковы, поток при выборе надлежащего масштаба
§ 4. Обтекание кругового цилиндра
Вернемся теперь обратно к задаче об обтекании цилиндра медленным (почти несжимаемым) потоком. Я дам вам качественное описание потока реальной жидкости. О таком потоке нам необходимо знать множество вещей. Например, какая увлекающая сила действует на цилиндр? Сила, увлекающая цилиндр, показана на фиг. 41.4 как функция величины ℛ, которая пропорциональна скорости
Фактически на рисунке отложен
Коэффициент увлечения изменяется довольно сложным образом, как бы намекая нам на то, что в потоке происходит нечто интересное и сложное. Свойства потока полезно описывать для различных областей изменения числа Рейнольдса. Прежде всего, когда число Рейнольдса очень мало, поток вполне стационарен, скорость в любой точке потока постоянна и он плавно обтекает цилиндр. Однако распределение линий потока не похоже на их распределение в потенциальном потоке. Они описывают решение несколько другого уравнения. Когда скорость очень мала или, что эквивалентно, вязкость очень велика, так что вещество по своей консистенции напоминает мед, можно отбросить инерционные члены и описать поток уравнением
Это уравнение впервые было решено Стоксом. Он также решил задачу для сферы. Когда маленькая сфера движется при малых числах Рейнольдса, то к ней приложена сила, равная 6πηaV, где а — радиус сферы, а V — его скорость.
Это очень полезная формула: она говорит нам о скорости, с которой мельчайшие частички, которые приближенно можно считать шариками, движутся в жидкости под действием данной силы, как, например, в центрифуге, или при осаждении, или, наконец, в процессе диффузии. В области малых чисел Рейнольдса, т. е. при ℛ<1, линии v вокруг
Если теперь мы увеличим скорость потока, так что число Рейнольдса станет несколько больше единицы, то увидим, что поток изменится.