Читаем Том 22. Сон разума. Математическая логика и ее парадоксы полностью

Ученые давали различные ответы на этот вопрос. Георг Кантор (1845–1918) предложил определять натуральные числа как числа, описывающие количество элементов множества, однако, как вы увидите в следующей главе, это «лекарство» только ухудшило положение «больного». Неудача Кантора, несомненно, обрадовала его заклятого врага Леопольда Кронекера (1823–1891), для которого вопрос об описании натуральных чисел был закрыт с формулировкой: «Бог создал натуральные числа. Всё остальное — работа человека». Джузеппе Пеано (1858–1932) был не настолько экзальтированным и предложил новую точку зрения, которую впервые представил в 1889 году в книге под названием «Начала арифметики, изложенные новым методом». До настоящего момента, рассуждал Пеано, предпринимались попытки сначала определить натуральные числа, а затем найти аксиомы, на основе которых можно было бы доказать теоремы. Почему бы не поступить наоборот? Сначала можно составить перечень аксиом, затем определить числа как объекты, удовлетворяющие им, и, возможно, в числе этих объектов будут не только привычные нам числа.

Обложка книги Джузеппе Пеано «Начала арифметики, изложенные новым методом».

Этот хитроумный шаг позволил Пеано возвести здание арифметики на основе всего пяти аксиом, пятая из которых, известная как аксиома индукции, вновь оказалась немного сложнее остальных. В основу новой арифметики легли особое число ноль и операция, ставящая в соответствие каждому натуральному числу другое, которое называется следующим за ним. Далее этот итальянский математик предложил описать на этом языке натуральные числа как объекты, обладающие следующими свойствами:

1) ноль есть натуральное число;

2) число, следующее за натуральным, тоже является натуральным;

3) ноль не следует ни за каким натуральным числом;

4) всякое натуральное число следует только за одним натуральным числом;

5) если множество А содержит ноль и содержит следующее число для любого числа, принадлежащего этому множеству, то А содержит все натуральные числа.

Первая теорема, которую можно доказать на основе аксиом Пеано, гласит, что единица отлична от нуля, однако сначала нужно объяснить, что такое «единица». Внимательно изучив доказательство этой теоремы, можно получить представление о том, как работать с аксиомами и правилами вывода. Как мы уже говорили, доказательство того, что единица отлична от нуля, обязательно должно начинаться с аксиомы, каковой является аксиома Пеано: «число, следующее за натуральным, тоже является натуральным» (1). Затем можно использовать другую аксиому или высказывание, получаемое из предыдущих согласно логическому правилу вывода.

На этом шаге мы выберем аксиому, которая звучит так: «Ноль есть натуральное число» (2). Теперь с помощью modus ponens из двух первых утверждений: «число, следующее за натуральным, тоже является натуральным» и «ноль есть натуральное число» — выведем третье высказывание доказательства: «существует число, следующее за нулем» (3). Для краткости будем называть это число единицей и будем обозначать его 1. На этом шаге можно перезаписать аксиому № 3, заменив ее эквивалентной формулировкой: «если число — ноль, то оно не является следующим ни для какого числа» (4), и применить высказывание (3), которое мы уже доказали выше и которое гласит: «следующее за нулем число есть единица». Использовав modus tollens, получим: «Если число — ноль, оно не является следующим ни для какого числа. Единица — следующее за нулем число, следовательно, единица — это не ноль». Именно так звучит наша теорема: «Единица отлична от нуля» (3).

Теперь, доказав, что ноль и единица — различные числа, мы можем задуматься: образуют ли объекты, удовлетворяющие аксиомам Пеано, бесконечный ряд, иными словами, существует ли бесконечно много натуральных чисел? Мы ведь знаем, что каждое число отличается от всех предыдущих. Именно здесь крайне важна аксиома индукции, которая позволяет доказывать теоремы обо всех натуральных числах, не рассматривая каждое из них конкретно. Чтобы понять, в чем заключается принцип индукции, представьте себе числа как последовательность костяшек домино, из которых мы выбрали несколько и подтолкнули их. Аксиома индукции подтверждает ожидания читателя: если мы подтолкнем первую костяшку в ряду и если при падении каждой костяшки будет падать следующая за ней, то после того как упадет первая костяшка, упадут и все остальные.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное