Читаем Том 26. Мечта об идеальной карте. Картография и математика полностью

2. Меридианы и параллели отображаются как прямые, они имеют равную длину (но не равны между собой) и перпендикулярны друг другу.

3. Меридианы распределены равномерно вследствие того, что масштаб во всех точках каждой параллели постоянен, однако масштабы на разных параллелях отличаются. Параллели распределены неравномерно и сближаются друг с другом по мере приближения к полюсам.

4. Так как проекция является равновеликой, она сохраняет площади (с учетом коэффициента масштаба поверхности). Этот коэффициент возникает при уменьшении размеров земной сферы (то есть при гомотетии) и постоянен во всех точках карты. Однако величины углов и геодезические линии не сохраняются.

3. Искажение форм, углов и расстояний вблизи экватора очень мало и растет по мере приближения к полюсам.

Вернемся к основному вопросу этой главы — как изменяются площади, углы и геодезические линии в равновеликой цилиндрической проекции Ламберта? Чтобы доказать, что эта проекция сохраняет площади, достаточно показать, что она сохраняет площади «прямоугольных» (достаточно малых, то есть бесконечно малых) участков, сторонами которых являются меридианы и параллели.

Как показано на следующем рисунке, для данной точки сферы на широте φ отображением меридиана (достаточно малого) длины будет отрезок прямой на поверхности цилиндра длиной l'l·cos φ, а отображением параллели (достаточно малой) длины k будет дуга окружности на поверхности цилиндра, длина которой будет равна k' = k/cos φ. Следовательно, бесконечно малый «прямоугольник» с основанием k и высотой l на поверхности сферы, площадь которого равна l·k, преобразуется в «прямоугольник» с основанием k' = k/cos φ и высотой l' l·cos φ. Площадь полученного прямоугольника также будет равна l·k. Как следствие, проекция Архимеда сохраняет площади неизменными.

Напомним, что в этой книге мы приводим только интуитивно понятные доказательства в духе классической геометрии. Более строгое доказательство требует использования дифференциальной геометрии и методов математического анализа.

Проекция Архимеда является равновеликой.

Тем не менее величины углов на карте, выполненной в проекции Ламберта, не сохраняются. Чтобы убедиться в этом, посмотрите на предыдущий рисунок. В силу искажений меридианов (они сжимаются) и параллелей (они расширяются) угол между основанием и диагональю прямоугольника на сфере будет больше, чем этот же угол в проекции прямоугольника на плоскость. Однако прямые углы между меридианами и параллелями сохраняются. Из вышеизложенного можно сделать вывод о необходимых и достаточных условиях сохранения величин углов.

1. Должны сохраняться углы между меридианами и параллелями (эти углы прямые, то есть равны 90°).

2. Искажение в направлении меридианов μ должно быть равно искажению в направлении параллелей λ.

По теореме Пифагора, если оба этих свойства выполняются, то искажения в любом направлении всегда будут одинаковыми. В частности, мы показали, что для равновеликой цилиндрической проекции Ламберта искажение в направлении меридианов равно μ = cos φ, искажение в направлении параллелей — λ = 1/cos φ, а круг, центром которого является точка на сфере, в этой проекции преобразуется в эллипс на плоскости, вытянутый в направлении «запад — восток». На следующей иллюстрации изображены эллипсы, построенные в различных участках Земли, которые позволяют увидеть искажения на различных широтах.

Индикатриса Тиссо, или эллипс искажения — один из способов графического изображения искажений на карте. В разных участках земной поверхности строятся небольшие окружности, после чего по их проекциям на карте можно увидеть проективные искажения в различных участках карты. Так, если мы примем радиус окружности равным λ, она преобразуется в эллипс, длины полуосей которого будут равны λ и μ. Если λ μ, то эллипсы примут форму окружностей, а отображение будет конформным. При λ = 1/ μ отображение будет равновеликим. На иллюстрации представлена индикатриса Тиссо для равновеликой цилиндрической проекции Ламберта.

Наконец, очевидно, что эта проекция не сохраняет геодезические линии, за исключением меридианов и экватора. Вывод таков: равновеликие проекции могут не быть изометрическими, и одного лишь сохранения площадей для создания точной карты Земли недостаточно.

Цилиндрические и псевдоцилиндрические проекции
Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги