Читаем Том 26. Мечта об идеальной карте. Картография и математика полностью

Равновеликая цилиндрическая проекция Ламберта при проецировании сферы на касающийся ее цилиндр определяется так: проекция любой точки сферы А — это точка цилиндра А' такая, что она является точкой пересечения поверхности цилиндра с прямой, проходящей через точку А и перпендикулярной оси цилиндра, как показано на рисунке. Эта проекция, очевидно, является геометрической, а Землю мы представляем как полупрозрачный пластиковый шар. Проекция земной поверхности на поверхность цилиндра образуется, если мы поместим источник света вдоль всей оси цилиндра, окружив ее линзой, которая пропускает только лучи света в горизонтальной плоскости, то есть перпендикулярно оси цилиндра.

В равновеликой цилиндрической проекции Ламберта точки земной сферы горизонтально проецируются на поверхность цилиндра, касающегося сферы. Затем цилиндр разрезается по меридиану и разворачивается на плоскости.

* * *

ИОГАНН ГЕНРИХ ЛАМБЕРТ (1728–1777)

Иоганн Генрих Ламберт родился в немецком городе Мюльхаузен в провинции Эльзас (в настоящее время — Мюлуз, Франция), куда члены его семьи переехали по религиозным причинам: они были кальвинистами. В 12 лет Ламберту пришлось оставить школу и помогать отцу-портному, но в свободное время Ламберт продолжал учиться самостоятельно. Позднее он работал клерком в сталелитейной мастерской, а в 1746 году занял должность частного секретаря швейцарского философа Исаака Изелина (1728–1782) в Базеле. Двумя годами позже он стал преподавателем в доме графа Питера фон Салиса в Куре. В этой должности у него оставалось достаточно свободного времени, чтобы заниматься математикой, астрономией и философией, а также пользоваться книгами из превосходной графской библиотеки.

Ламберт был исключительным математиком: он доказал иррациональность числа π и предположил, что числа е и π трансцендентны, то есть их нельзя представить как корни многочлена с целыми коэффициентами. Он одним из первых изучил проблему, связанную с пятым постулатом Евклида. Ламберт предположил, что пятый постулат ложен, и получил результаты, относящиеся к неевклидовой геометрии. Он занимался гиперболическими функциями, проводил важные исследования в сферической геометрии, картографии и науке о перспективе, а также совершил важные открытия в теории вероятностей. Интересы Ламберта не ограничивались исключительно математикой: он также был автором важных работ по физике, астрономии и философии.

* * *

Если мы примем радиус земной сферы равным единице и будем считать, что цилиндр касается ее в точках, лежащих на экваторе, то ось цилиндра будет проходить через Северный и Южный полюса. После построения проекции сферы на поверхность цилиндра он разрезается по меридиану и разворачивается на плоскости. Эта развертка цилиндра на плоскости является изометрической и сохраняет все интересующие нас метрические свойства. Первую карту мира в этой проекции составил Иоганн Генрих Ламберт в 1772 году.

Карта, выполненная в равновеликой цилиндрической проекции Ламберта (1772).

Далее перечислены некоторые свойства карты, выполненной в равновеликой цилиндрической проекции Ламберта.

1. Она имеет прямоугольную форму, как и все карты, выполненные в цилиндрических проекциях.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги