Читаем Том 26. Мечта об идеальной карте. Картография и математика полностью

Португальский астроном и математик Педру Нуниш (1502–1578) описал и подробно изучил локсодромы (на поверхности Земли они имеют форму спиралей, закручивающихся к полюсам) в своем «Трактате о навигации» (1537). В этой книге Нуниш опроверг распространенное убеждение, согласно которому при сохранении неизменного румба судно двигалось вдоль дуги большого круга, то есть вдоль кривой минимальной длины. При прокладке курса между двумя точками Земли мореплаватели пытались следовать кратчайшему пути — ортодроме. Однако для этого требовалось постоянно изменять румб, из-за чего было нетрудно сбиться с курса. Вдоль локсодромы двигаться было удобнее — достаточно выдерживать постоянный румб, однако путь при этом получался длиннее. Уже в 1541 году Меркатор изобразил на созданном им глобусе множество локсодром.

Для построения навигационной карты требовалось решить геометрическую задачу: найти конформную проекцию, в которой локсодромы изображались бы прямыми на плоскости. Меридианы и параллели на карте должны были изображаться перпендикулярными прямыми. При подробном анализе проекции Ламберта, описанном в главе 5, мы выяснили, что равновеликая цилиндрическая проекция Ламберта не является конформной, так как вносимые ею искажения вдоль меридианов, равные cosφ, не равны искажениям в направлении параллелей, 1/cosφ = secφ, где φ — широта рассматриваемой точки. Необходимо было изменить карту так, чтобы искажения вдоль меридианов и параллелей совпадали. В частности, карту в проекции Ламберта нужно «растянуть» в направлении «север — юг». Карта станет не сжатой (искажение вдоль меридианов равно cosφ, а вытянутой (новое искажение будет равно 1/cosφ = secφ). В этом заключается основная идея построения нужной карты. Если мы выразим это искажение математически, получим выражение, описывающее искомую проекцию — проекцию Меркатора:

где θ — долгота (θ0 — долгота центрального меридиана карты), φ — широта, а для сферической модели Земли R = 1.

Современная карта, выполненная в проекции Меркатора.

Именно это и сделал Меркатор при создании карты «Новое и улучшенное описание мира с исправлениями для использования в навигации» (Nova et aucta or bis terrae descriptio ad usum navigatum emendate accommodata) 1569 года: он построил сетку перпендикулярных друг другу меридианов и параллелей, а затем раздвинул параллели, чтобы компенсировать искажения вдоль меридианов. В результате искажения вдоль меридианов и параллелей на карте Меркатора оказались одинаковыми.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги