Читаем Том 26. Мечта об идеальной карте. Картография и математика полностью

ПОРТУЛАНЫ

Карты мира, созданные в позднем Средневековье, были совершенно бесполезны для навигаторов. Мореплаватели полагались на собственные заметки, где описывались морские пути между портами, проложенные по результатам измерений, астрономических наблюдений и рекогносцировки побережий. После изобретения в XII веке компаса эти заметки стали более точными, начали появляться штурманские книги, в которых приводилась подробная информация о расстояниях и румбах. В какой-то момент на основе этих заметок начали создаваться карты побережий с информацией для мореплавателей — так называемые портуланы, которые стали первыми навигационными картами. На портуланах подробно описывались побережья и самым тщательным образом изображались порты, элементы рельефа и все, что представляло опасность для мореплавателей. Географические названия записывались перпендикулярно линии побережья, внутренние территории, как правило, оставались пустыми. На портуланах также изображались компасы и розы ветров, в которых сходились многочисленные линии румбов, внешне напоминавшие паутину, а также указывался масштаб карты. Мореплаватель с помощью линейки проводил прямую, соединявшую порт отплытия и порт назначения, после чего посредством параллельного переноса построенной прямой до ближайшей розы ветров определял румб, которым нужно было следовать. Хотя эти карты, в особенности карты средиземноморского побережья, были достаточно точными, картографическая информация в них была, очевидно, приближенной. На портуланах не учитывалась кривизна Земли, а при их построении не применялась какая-либо картографическая проекция.

Карта Европы и Средиземного моря из «Каталанского атласа» 1375 года. На иллюстрации представлена копия, выполненная в XIX веке.

* * *

Оригинальная карта Меркатора 1569 года.

В статье Джерома Сакса «Любопытная смесь карт, дат и имен» (A Curious Mixture of Maps, Dates, and Names, 1987) отмечается, что хотя в математическом уравнении проекции Меркатора используется логарифм, Джон Непер опубликовал свой труд о логарифмах лишь в начале XVII века. Кроме того, чтобы вывести уравнения проекции Меркатора, требовалось использовать методы математического анализа и дифференциальной геометрии, однако Ньютон и Лейбниц родились спустя 50 лет после смерти Меркатора, а Гаусс создал дифференциальную геометрию лишь в начале XIX века. Как же Меркатор составил свою карту в 1569 году? Видимо, не располагая методами, которые появились в математике позднее, он обладал обширными знаниями в области картографии и, как следствие, развитой интуицией.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги