Читаем Том 3. Квантовая механика полностью

Если мы на состояние |I> подействуем оператором отражения ^P, он перевернет его, поменяв местами |1> с|2>, а |2> с|1>; получатся вероятности, показанные на фиг. 15.3,б. Перед нами опять состояние |I>. Если начать с состояния |II>, то вероятности до и после отражения будут выглядеть тоже одинаково. Правда, если посмотреть на амплитуды, то разница все же есть. У состояния |I> после отражения амплитуды останутся теми же, у состояния |II> они приобретут противоположный знак. Иными словами,

(15.12)

Если написать ^P|ψ0>=e0>, то у состояния |I> мы имеем еiδ=1, а у состояния |II> имеем еiδ=-1.

Возьмем другой пример. Пусть у нас есть правополяризованный по кругу фотон, распространяющийся в направлении z. Если мы совершим операцию поворота вокруг оси z, то, как мы знаем, это просто приведет к умножению амплитуды на eiφ, где φ — угол поворота. Значит, в этом случае для операции поворота δ просто равно углу поворота.

Далее, ясно, что если оказывается верным, что оператор ^Q в какой-то момент времени просто меняет фазу состояния (скажем, в момент t=0), то это будет верно всегда. Иначе говоря, если состояние |ψ1> переходит за время t в состояние |ψ2>:

(15.13)

и если симметрия физической картины такова, что

(15.14)

то верно и то, что

(15.15)

Это ясно, ведь

и если ^Q|ψ1>=еiδ1>, то

[Верхние равенства следуют из (15.13) и (15.10) для симметричной системы, нижние — из (15.14) и из того, что всякое число, скажем еiδ, коммутирует с оператором.]

Итак, при некоторых симметриях то, что верно сначала, верно всегда. Но разве это не закон сохранения? Да! Он утверждает, что если вы взглянете на исходное состояние и, проделав где-то в стороне небольшой подсчет, откроете, что операция, которая является операцией симметрии для системы, приводит только к умножению на некоторый фазовый множитель, то вы будете уверены, что это же свойство будет выполнено для конечного состояния — та же операция умножит и конечное состояние на тот же фазовый множитель. Это будет верно всегда, даже если вы ничего не знаете о том внутреннем механизме мира, который изменяет систему от начального состояния к конечному. Даже если вы не позаботились вглядеться в детали того, каким именно способом система переходит от одного состояния к другому, вы все равно имеете право говорить, что если вещь вначале находилась в состоянии с определенным характером симметрии и если гамильтониан этой вещи симметричен относительно этой операции симметрии, тогда тот же характер симметрии останется у состояния на вечные времена. Это основа всех законов сохранения квантовой механики.

Рассмотрим частный пример. Возьмем опять оператор ^P. Сперва, правда, немножко изменим определение операции Р. Пусть ^P будет не просто зеркальным отражением, потому что оно требует определения плоскости, в которой поставлено зеркало. Существует особый вид отражения, который указания плоскости не требует. Переопределим операцию ^P таким образом: сперва вы отражаете в зеркале, находящемся в плоскости z, так что z переходит в -z, x остается х, а у остается у; затем вы поворачиваете систему на угол 180° вокруг оси z, так что х переходит в -х, а у в -у. Все вместе называется инверсией, обращением координат. Каждая точка проецируется через начало координат в диаметрально противоположное положение. Все координаты всего на свете меняют знак. Эту операцию мы, как и прежде, будем обозначать символом Р. Она изображена на фиг. 15.4 и немного удобнее, чем простая операция отражения, потому что не нужно указывать, в какой координатной плоскости происходит отражение, достаточно лишь указать точку, являющуюся центром симметрии.

Фиг. 15.4. Операция инверсии ^P. То, что находится в точке A(х, у, z), переходит в точку А'(-х, -у, -z).

Теперь предположим, что у нас есть состояние |ψ0>, которое при операции инверсии переходит в е0>, т. е.

(15.16)

Сделаем теперь новую инверсию. После двух инверсий мы вернемся к тому, с чего начали: ничего не изменится. Должно получиться

Но

Отсюда следует, что (еiδ)2=1. Значит, если оператор инверсии является операцией симметрии для какого-то состояния, то у δ могут быть только две возможности:

а это означает, что или

(15.17)

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги