Теперь положим, что мы осветили таким светом стенку, способную поглотить его (или по крайней мере часть его), и рассмотрим один из атомов стенки, опираясь на классические представления. Мы часто представляли движение электрона в атоме в виде гармонического осциллятора, который приводится в действие внешним электрическим полем. Предположим, что атом изотропен, так что с равным успехом колеблется как в направлении х, так и в направлении у. Далее, у света, поляризованного по кругу, смещения по х и по у одинаковы, хотя и отстают друг от друга на 90°. В итоге электрон будет двигаться по кругу (фиг. 15.5, б). Он сместится из положения равновесия в начале координат на величину r и начнет ходить по кругу, как-то отставая по фазе от вектора ℰ. Связь между ℰ и r может быть такая, как показано на фиг. 15.5, б. Электрическое поле с течением времени поворачивается, но с такой же частотой поворачивается и смещение, так что относительная ориентация остается той же. Посмотрим теперь, какая работа производится над электроном. Скорость, с какой электрону подается энергия, равна его скорости v, умноженной на компоненту ℰt, параллельную этой скорости:
(15.31)
Но вы не можете не заметить, что у электрона в это время непрерывно увеличивается и момент количества движения, потому что он все время испытывает действие момента, вращающего его вокруг начала координат. Вращательный момент равен ℰtr, и он обязан равняться скорости изменения момента количества движения dJz/dt:
(15.32)
Вспоминая, что v=ωr, имеем
Следовательно, если проинтегрировать поглощаемый полный момент количества движения, то он окажется пропорциональным полной энергии, с коэффициентом пропорциональности 1/ω, что согласуется с (15.30). Свет действительно несет с собой момент количества движения — одну единицу (×ℏ), когда он правополяризован по кругу вдоль оси z, и минус одну единицу, когда левополяризован.
Теперь зададим следующий вопрос: если свет линейно поляризован в направлении х, то чему равен момент количества движения? Свет, поляризованный в направлении х, может быть представлен суперпозицией право- и левополяризованного света. Поэтому имеется некоторая амплитуда того, что момент количества движения равен +ℏ, и некоторая амплитуда того, что момент равен -ℏ, так что определенного момента количества движения у него нет, а есть амплитуда появиться с +ℏ, и такая же появиться с -ℏ. Интерференция этих двух амплитуд создает линейную поляризацию, обладающую равной вероятностью оказаться с плюс или с минус одной единичкой момента количества движения. Макроскопические измерения, проведенные над пучком линейно поляризованного света, покажут, что он несет нулевой момент количества движения, потому что среди большого числа фотонов, несущих противоположные количества момента, окажется поровну правых и левых, и средний момент количества движения будет равен нулю. И в классической теории вы не обнаружите никакого момента количества движения, разве что где-то окажутся следы какой-то круговой поляризации.
Мы говорили, что частица со спином 1 может иметь три значения Jz: +1, 0, -1 (те три состояния, которые нам встретились в опыте Штерна — Герлаха).
Но у света свой нрав: у него только два состояния. Состояния с нулем у него нет. Эта странная потеря связана с тем, что свет не может стоять на месте. У покоящейся частицы со спином j имеются 2j+1 возможных состояния со значениями jz, идущими с шагом 1 от -j до +j. Но оказывается, что если что-то имеет спин j, а масса этого чего-то равна нулю, то у него могут быть только состояния с компонентами +j и -j вдоль направления движения. Например, у света не три состояния, а два, хотя фотон — это объект со спином 1. Как же это согласуется с нашими прежними доказательствами, опирающимися на то, что происходит при поворотах в пространстве, доказательствами того, что для частиц со спином 1 необходима тройка состояний? Покоящуюся частицу можно поворачивать вокруг любой оси, не меняя состояния ее момента. Частицы же с нулевой массой покоя (например, фотоны или нейтрино) не могут находиться в покое; только повороты вокруг оси, указывающей направление движения, не изменят состояния момента. А поворотов вокруг одной оси не хватает на то, чтобы доказать, что нужны обязательно три состояния, если дано, что одно из них при поворотах на угол φ меняется, как еiφ[66].
Еще одно замечание в сторону. Вообще-то частицы с нулевой массой покоя могут обойтись только одним из двух спиновых состояний (+j, -j) относительно линии движения. У нейтрино (частиц со спином 1/2) в природе существуют только состояния с компонентой момента количества движения -ℏ/2, обратной направлению движения (а у антинейтрино — только с компонентой по направлению движения, +ℏ/2). Когда же система обладает симметрией инверсии (так что четность сохраняется), требуются уже обе компоненты +j и -j. Примером является свет.
§ 5. Распад Λ0