Если вам не ясно, как написаны амплитуды (15.33) и (15.34), можно их записать в более математической форме. Когда мы писали (15.33), нам нужна была амплитуда того, что Λ со спином, направленным по +z, распадается на протон, движущийся вдоль направления +z' и обладающий спином, направленным тоже по +z', т. е.
(15.42)
По общим теоремам квантовой механики эту амплитуду можно записать так:
(15.43)
где суммирование проводится но базисным состояниям |Λ, i> покоящейся Λ-частицы. Поскольку спин Λ-частицы равен 1/2, таких состояний два, в каком бы базисе мы ни работали. Если в качестве базисных мы выберем состояния со спином, направленным вверх и вниз по отношению к оси z'(|+z'>, |-z'>), то амплитуда (15.43) будет равна сумме
(15.44).
Первый множитель в первом слагаемом равен а [из (15.38)], а первый множитель во втором слагаемом равен нулю — из формулы (15.41), в свою очередь следующей из сохранения момента количества движения. Второй множитель <Λ, +z'|Λ, +z> из первого слагаемого — это как раз амплитуда того, что частица со спином 1/2, направленным вверх по одной оси, будет также обладать спином, направленным вверх по другой оси, повернутой относительно первой на угол θ. Такая амплитуда равна cosθ/2 [см. табл. 4.2 (вып. 8)]. Так что (15.44) равно просто а cosθ/2, как и было написано в (15.33). Амплитуда (15.34) следует из таких же рассуждений для Λ-частицы со спином, направленным вниз.
* * *§ 6. Сводка матриц поворота
Теперь мы хотим собрать воедино все, что мы узнали о поворотах частиц со спином 1/2 и спином 1; это будет удобно для дальнейшего. Ниже вы найдете таблицы двух матриц поворота Rz(φ) и Ry(θ) для частиц со спином 1/2, для частиц со спином 1 и для фотонов (частиц со спином 1 и нулевой массой).
Таблица 15.1. МАТРИЦЫ ПОВОРОТА ДЛЯ СПИНА ½. Два состояния:
|+>, вверх по оси z, m=+1/2
|—>, вниз по оси z, m=—1/2
Таблица 15.2. МАТРИЦЫ ПОВОРОТА ДЛЯ СПИНА 1. Три состояния:
|+>, m=+1
|0>, m=0
|—>, m=—1
Таблица 15.3. ФОТОНЫ. Два состояния:
|R>=1/√2(|x>+iy>), m=+1 (правополяризованные)
\L>=1/√2(\x>—i|y>), m=—1 (левополяризованные)
Для каждого из них приведены элементы матрицы <j|R|i> поворотов вокруг оси z или оси y. Они, конечно, в точности эквивалентны амплитудам типа <+T|0S>, которыми мы пользовались в предыдущих главах. Под Rz(φ) мы понимаем, что берется проекция состояния на новую систему координат, повернутую на угол φ вокруг оси z, причем для определения направления поворота всегда применяется правило правой руки; Ry(θ) означает, что оси координат повернуты на угол θ вокруг оси у. Зная эти два поворота, вы запросто сможете рассчитать любой поворот. Как обычно, матричный элемент пишется так, что состояние слева — это базисное состояние новой (повернутой) системы, а состояние справа — это базисное состояние старой (неповернутой) системы. Клетки таблицы можно истолковывать по-разному. К примеру, клетка eiφ/2 в табл. 15.1 означает, что матричный элемент < — |R| —>=е-iφ/2. Но это означает также, что ^R| —>=е-iφ/2|—> или что <—| ^R=<—|e-iφ. Это все одно и то же.
Глава 16 МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ
§ 1. Электрическое дипольное излучение
В предыдущей главе мы развили представления о сохранении момента количества движения в квантовой механике и показали, как ими можно воспользоваться для предсказания углового распределения протонов при распаде Λ0-частицы. Теперь мы хотим добавить еще несколько иллюстраций тех следствий, которые вытекают из сохранения момента количества движения в атомных системах. Первым примером послужит излучение света атомом. Сохранение момента количества движения (наряду с другими обстоятельствами) определит поляризацию и угловое распределение испускаемых фотонов.
Пусть имеется атом в возбужденном состоянии с определенным моментом количества движения, скажем со спином, равным 1; он, излучая фотон, переходит к состоянию с моментом нуль при более низкой энергии. Задача в том, чтобы представить угловое распределение и поляризацию фотонов. (Она очень похожа на задачу о распаде Λ0-частицы, но только теперь спин равен не 1/2, а 1.) Раз у возбужденного состояния спин равен единице, то для z-компоненты момента имеются три возможности. Значение m может быть или +1, или 0, или -1. Возьмем для примера m=+1. (Если мы разберемся в этом примере, то справимся и с другими.) Предположим, что момент количества движения атома направлен по оси +z (фиг. 16.1, а), и спросим, какова амплитуда того, что он излучит вверх по оси z правополяризованный по кругу свет, так что в результате его момент станет равным нулю (фиг. 16.1, б).
Фиг. 16.1. Атом с m=+1 излучает вдоль оси +z правый фотон.