Последний поворот на -90° вокруг оси у" переводит нас в систему х'", у'", z'"; из (4.33) следует
Сочетая эти два последних преобразования, получаем
Подставляя сюда вместо С'+ и С'- (4.32), придем к полному преобразованию
А если вспомнить, что
то эти формулы можно записать проще:
(4.34)
Это и есть наше искомое преобразование для поворота вокруг оси х на любой угол α. Оно лишь чуть посложнее остальных.
§ 6. Произвольные повороты
Теперь уже понятно, как быть с произвольным поворотом. Во-первых, заметьте, что любая относительная ориентация двух систем координат может быть описана тремя углами (фиг. 4.9).
Фиг. 4.9. Ориентацию любой системы координат х', у', z' по отношению к другой системе х, у, z можно определить с помощью углов Эйлера α, β, γ.
Если есть система осей х', у', z', ориентированных относительно х, у, z как угодно, то соотношение между ними можно описать тремя углами Эйлера α, β и γ, определяющими три последовательных поворота, которые переводят систему х, у, z в систему х', у', z'. Отправляясь от x, у, z, мы поворачиваем нашу систему на угол β вокруг оси z, перенося ось х на линию х'. Затем мы проводим поворот на угол α вокруг этой временной оси х1, чтобы довести ось z до z'. Наконец, поворот вокруг новой оси z (т. е. вокруг z') на угол γ переведет ось х1 в х', а ось у в у'[16]. Мы знаем преобразования для каждого из трех поворотов — они даются формулами (4.19) и (4.34). Комбинируя их в нужном порядке, получаем
(4.35)
Итак, начав просто с некоторых предположений о свойствах пространства, мы вывели преобразование амплитуды при любом повороте. Это означает, что если нам известны амплитуды того, что любое состояние частицы со спином 1/2 перейдет в один из двух пучков прибора Штерна—Герлаха S с осями х, у, z, то мы можем подсчитать, какая часть перейдет в каждый пучок в приборе Т с осями х', у' и z'. Иначе говоря, если имеется состояние ψ частицы со спином 1/2, у которого амплитуды пребывания вверху и внизу по отношению к оси z системы координат х, у, z равны С+=<+|ψ> и С-=<-|ψ>, то тем самым мы знаем амплитуды С+ и C- пребывания вверху и внизу по отношению к оси z' любой другой системы х', у', z'. Четверка коэффициентов в (4.35) — это члены «матрицы преобразования», с помощью которой можно проецировать амплитуды частицы со спином 1/2 в другие системы координат.
Теперь решим несколько примеров, чтобы посмотреть, как все это работает. Возьмем следующий простой вопрос. Пустим атом со спином 1/2 через прибор Штерна—Герлаха, пропускающий только состояние (+z). Какова амплитуда того, что атом окажется в состоянии (+x)? Ось +х — это все равно, что ось +z' системы, повернутой на 90° вокруг оси у. Поэтому в этой задаче проще воспользоваться выражением (4.32), хотя, конечно, можно применить и полное уравнение (4.35). Поскольку С+=1 и С-=0, то получится С'+=1/√2. Вероятности — это квадраты модулей этих амплитуд; таким образом, 50% шансов за то, что частица пройдет сквозь прибор, отбирающий состояние (+х). Если бы мы поинтересовались состоянием (-х), то амплитуда оказалась бы -1/√2, что опять дало бы вероятность 1/2, чего и следовало ожидать из симметрии пространства. Итак, если частица находится в состоянии (+z), то ей в равной степени вероятно побывать в состояниях (+x) и (-х). Но фазы противоположны.
Ось у тоже без претензий. Частица в состоянии (+z) имеет равные шансы быть в состоянии (+у) или (-у). Но теперь (согласно формуле для поворота на -90° вокруг оси х) амплитуды суть 1/√2 и -i/√2. В этом случае разница в фазах двух амплитуд уже не 180°, как было для (+х) и (-х), а 90°. В этом-то и проявляется различие между х и у.
Вот еще пример. Пусть нам известно, что частица со спином 1/2 находится в состоянии ψ, поляризованном вверх относительно оси А, определяемой углами θ и φ (фиг. 4.10).
Фиг. 4.10. Ось А, определяемая полярными углами θ и φ.