Читаем Том 3. Квантовая механика полностью

Одиночный электрон в пустом пространстве может при некоторых условиях обладать вполне определенной энергией. Например, если он покоится (т. е. не обладает ни перемещательным движением, ни импульсом, ни кинетической энергией), то у него есть энергия покоя. Объект посложнее, например атом, тоже может, покоясь, обладать определенной энергией, но он может оказаться и внутренне возбужденным — возбужденным до другого уровня энергии. (Механизм этого мы опишем позже.) Часто мы вправе считать, что атом в возбужденном состоянии обладает определенной энергией; впрочем, на самом деле это верно только приближенно. Атом не остается возбужденным навечно, потому что он всегда стремится разрядить свою энергию, взаимодействуя с электромагнитным полем. Так что всегда есть некоторая амплитуда того, что возникнет новое состояние — с атомом в низшем состоянии возбуждения и электромагнитным полем в высшем. Полная энергия системы и до, и после — одна и та же, но энергия атома уменьшается. Так что не очень точно говорить, что у возбужденного атома есть определенная энергия; но часто так говорить удобно и не очень неправильно.

[Кстати, почему все течет в одну сторону и не течет в другую? Отчего атом излучает свет? Ответ связан с энтропией. Когда энергия находится в электромагнитном поле, то перед ней открывается столько разных путей — столько разных мест, куда она может попасть, — что, отыскивая условие равновесия, мы убеждаемся, что в самом вероятном положении поле оказывается возбужденным одним фотоном, а атом — невозбужденным. И фотону требуется немалое время, чтобы возвратиться и обнаружить, что он может возбудить атом обратно. Это полностью аналогично классической задаче: почему ускоряемый заряд излучает? Не потому, что он «хочет» утратить энергию, нет, ведь на самом-то деле, когда он излучает, энергия мира остается такой же, как и прежде. Просто излучение или поглощение всегда идет в направлении роста энтропии.]

Ядра тоже могут существовать на разных энергетических уровнях, и в том приближении, когда пренебрегают электромагнитными эффектами, мы вправе говорить, что ядро в возбужденном состоянии таким и остается. Хоть мы и знаем, что оно не останется таким навсегда, часто бывает полезно исходить из несколько идеализированного приближения, которое проще рассмотреть. К тому же в некоторых обстоятельствах — это узаконенное приближение. (Когда мы впервые вводили классические законы падения тел, мы не учитывали трения, а ведь почти не бывает так, чтобы трения вовсе не было.)

Кроме того, существуют еще «странные частицы» с различными массами. Но более массивные из них распадаются на более легкие, так что опять неправильно будет говорить, будто их энергия точно определена. Это было бы верно, если бы они сохранялись навечно. Так что когда мы приближенно считаем их обладающими определенной энергией, то забываем при этом, что они должны распасться. Но сейчас мы нарочно забудем про такие процессы, а после, со временем, выучимся принимать во внимание и их.

Пусть имеется атом (или электрон, или любая частица), обладающий в состоянии покоя определенной энергией E0. Под энергией Е0 мы подразумеваем массу всего этого, умноженную на с2. В массу входит любая внутренняя энергия; стало быть, масса возбужденного атома отличается от массы того же атома, но в основном состоянии. (Основное состояние означает состояние с наинизшей энергией.) Назовем Е0 «энергией покоя».

Для атома, находящегося в состоянии покоя, квантовомеханическая амплитуда обнаружить его в каком-то месте всюду одна и та же; от положения она не зависит. Это, разумеется, означает, что вероятность обнаружить атом в любом месте — одна и та же. Но это означает даже большее. Вероятность могла бы не зависеть от положения, а фаза амплитуды при этом могла бы еще меняться от точки к точке. Но для частицы в покое полная амплитуда всюду одинакова. Однако она зависит от времени. Для частицы в состоянии определенной энергии Е0 амплитуда обнаружить частицу в точке (х, у, z) в момент t равна

(5.1)

где а — некоторая постоянная. Амплитуда пребывания в такой-то точке пространства для всех точек одинакова, но зато зависит от времени согласно (5.1). Мы просто допустим, что это правило верно всегда.

Можно, конечно, (5.1) записать и так:

(5.2)

где

а М — масса покоя атомного состояния или частицы. Существуют три разных способа определения энергии: по частоте амплитуды, по энергии в классическом смысле или по инертной массе. Все они равноценны; это просто разные способы выражать одно и то же.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги