Читаем Том 37. Женщины-математики. От Гипатии до Эмми Нётер полностью

Благодаря тяге к знаниям и трудолюбию, а также финансовой поддержке сестры Констанс, которая к тому времени уже преподавала, Джулия прослушала несколько курсов в Калифорнийском университете в Беркли. Дальнейшая учеба не особенно помогала в поисках работы: работодатели спрашивали Джулию не о математике, а о том, как быстро она печатает на машинке. В Беркли Джулия влюбилась одновременно в красоту высшей математики и в очаровательный голос одного из преподавателей — юного Рафаэля Робинсона (1911–1955). В университете девушка узнала, что была прекрасным лебедем среди гадких утят. Именно там она впервые почувствовала себя по-настоящему счастливой. Незадолго до того как мир содрогнулся от нападения на Пёрл-Харбор, Джулия и Рафаэль поженились.


Джулия Боумен выходит замуж

Согласно университетским правилам, Джулия не могла преподавать математику на той же кафедре, что и ее муж. К счастью, Ежи Нейман (1894–1981) пригласил ее заняться статистикой в лабораторию секретных военных проектов. Джулию всегда привлекала эта сфера, особенно после того как она познакомилась с впечатляющей бейсбольной статистикой. И все же статистика не была истинной страстью Джулии — ее больше привлекала рискованная жизнь профессионального математика. Впрочем, к новой работе она отнеслась со всей серьезностью. Как-то раз Джулию попросили описать, как проходит ее обычная неделя. Она ответила: «Понедельник: попытаться доказать теорему. Вторник: попытаться доказать теорему. Среда: попытаться доказать теорему. Четверг: попытаться доказать теорему. Пятница: теорема оказалась неверной».



Джулия с мужем Рафаэлем Робинсоном.


Джулия и Рафаэль хотели завести ребенка, и Джулия стала уделять математике меньше времени, готовясь стать матерью. Она забеременела, но, к несчастью, потеряла плод. Возможно, тем самым она спасла себе жизнь: врач обнаружил в митральном клапане Джулии рубцовую ткань и сообщил супругам, что ее слабое сердце не выдержит еще одной беременности. Более того, доктор признался мачехе Джулии, что если ее падчерица доживет до 40 лет, это будет чудом. Молодая пара была вынуждена остаться бездетной. Чтобы справиться с депрессией, Джулия при поддержке Рафаэля с головой ушла в математику.

В 1946 году она получила степень доктора под руководством выдающегося математика Альфреда Тарского (1902–1983), защитив диссертацию о проблемах разрешимости в арифметике рациональных чисел (Definability and Decision Problems in Arithmetic). Джулия столкнулась с подобными проблемами впервые, и, по всей видимости, они произвели на нее неизгладимое впечатление. Именно Тарский первым заговорил с подопечной о диофантовых уравнениях.

За исключением всего двух важных статей, все математические труды Джулии Робинсон касались десятой проблемы Гильберта (о ней мы более подробно поговорим далее) и проблем разрешимости. Первая из этих двух статей (A Note on Exact Sequential Analysis) была посвящена аналитико-статистической задаче и написана в период совместной работы с Нейманом. Во второй статье, опубликованной в 1951 году, во время короткого периода работы в корпорации RAND (ведущем американском мозговом центре), рассматривалось решение проблемы равновесия Нэша в теории игр, в то время находившейся на пике популярности, называлась эта работа «Итеративный метод решения игр» (An Iterative Method of Solving a Game).

Как видите, Джулия Робинсон и диофантовы уравнения были словно созданы друг для друга.

Диофантово уравнение — это уравнение с одной или несколькими неизвестными с целыми коэффициентами, решения которого принадлежат множеству целых чисел . Эти уравнения названы в честь древнегреческого математика Диофанта Александрийского (ок. 200–214 — ок. 284–298), который посвятил им целый трактат — «Арифметику». Примером диофантового уравнения является уравнение с тремя неизвестными

х2 + у2z2.

Как вы знаете, это уравнение выражает теорему Пифагора, и еще с глубокой древности известно, что оно имеет бесконечно много решений. В параметрическом виде решениями этого уравнения являются тройки чисел вида:

х = m2n2,

у = 2mn,

= m2 + n2,

где m и n — целые числа. Такие тройки чисел называются пифагоровыми и известны уже много веков. Намного интереснее выглядят тройки ненулевых чисел х, у, z, когда выполняется условие

хn + уnzn, n > 2.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги