Читаем Том 9. Загадка Ферма. Трехвековой вызов математике полностью

Когда Ферма отправил на рассмотрение парижских математиков свой труд «Методы нахождения максимумов и минимумов и построения касательных к кривым», Декарт нашел возможность отыграться и объявил рассуждения Ферма сомнительными. Роберваль и Этьен Паскаль встали на его защиту, а Мидорж и Дезарг приняли сторону Декарта. В апреле 1638 года Роберваль пишет: «Когда сеньор Декарт всецело поймет метод максимумов и минимумов и построения касательных к кривым сеньора Ферма, то оставит сомнения в том, почему этот метод нашел своих сторонников, и оценит по достоинству этот превосходный метод, достойный своего автора». Любопытную роль в этой истории сыграл Мерсенн, так как вся переписка велась через него. Декарт, равно как и Ферма, отправлял письма Мерсенну, подразумевая, что он объяснит их содержание противоположной стороне. В итоге Дезарг признал правоту Ферма, и Декарту пришлось принять очевидное: «Увидев последний метод, примененный для нахождения касательных к кривым, я не могу ответить иначе как признав, что он очень хорош и что если бы он был объяснен в такой форме с самого начала, то я абсолютно не стал бы противоречить».

Страсти постепенно улеглись. 29 июня 1638 года Декарт пишет Мерсенну: «Я вижу, что вы оказали любезность сообщить мне о письмах Ферма в мой адрес, прежде всего относящихся к тому, что он сказал, что его чрезвычайно огорчили слова моей первой статьи. Я смиренно прошу у него прощения за высказанные упреки».

Наконец, в октябре 1638 года Декарт впервые пишет самому Ферма в знак примирения: «Должен признаться, что я никогда не встречал никого, кто производил бы впечатление человека, столь сведущего в геометрии, как вы… Несмотря на это, подобно тому как наш взгляд более пристально задерживается на малейших изъянах бриллианта, чем на крупных огрехах простого камня, так и я посчитал нужным более пристально рассмотреть ваши слова по сравнению со словами любого другого человека, которого я ценил бы не столь высоко».

Но инцидент этим не исчерпался. Декарт видел в Ферма гения и соперника, поэтому побаивался его и старался подорвать его авторитет при любой возможности. Как-то раз, проанализировав работу Ферма об определении касательной к циклоиде (работа не содержала ошибок), Декарт написал Мерсенну, что в труд Ферма вкрались ошибки и Ферма не соответствует званию математика и мыслителя. Декарт занимал заметное положение в научном сообществе того времени, и это, несомненно, повлияло на то, что у многих ученых сложилось ошибочное представление о Ферма.

Но гений Ферма не переставал сверкать. Он первым заложил основы алгебраической геометрии, опередив Декарта с его «Геометрией». Вместе с Паскалем он создал теорию вероятностей. Достигнутые им результаты в алгебре и методы доказательства, которые он использовал, дали начало современной теории чисел. Его вклад в математику этим не ограничивается — мы привели лишь несколько примеров. Наконец, Ферма как математик несомненно превзошел Декарта. Ферма всячески старался сгладить трения и остроумно заметил, комментируя ошибку в «Геометрии», что так ценит гений Декарта, что, несмотря на все имеющиеся ошибки, эта работа достойнее других, в которых нет ни единой неточности.

Теория преломления света

История имела продолжение, когда речь зашла о теории преломления света. После смерти Декарта один из учеников предложил опубликовать все его письма. Он обратился за помощью к Ферма, попросив у того все письма, полученные от Декарта. Это побудило Ферма пересмотреть свою работу о преломлении света. Он остался недоволен своими же рассуждениями и решил заняться этой темой повторно. Именно тогда он сформулировал принцип, согласно которому свет распространяется по траектории, для которой время движения минимально. Этот принцип теперь известен как принцип Ферма. Он был включен в труд «Анализ и синтез преломления лучей», опубликованный примерно в 1660 году. С помощью этого принципа стало возможным дать математическое объяснение закону Снелла. И опять мы видим, с каким упорством Ферма подходил к решению задач. Он возвращался к ним снова и снова, всякий раз совершая новые открытия. Такого же упорства он ждал и от своих современников при решении задач, которые предлагал им.

* * *

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже