Числа 4, 3, 5 образуют пифагорову тройку: 42 + 32 = 52. Поделив обе части равенства на 52, получим (4/5)2 + (3/5)2 = 1. Теперь, если мы умножим обе части равенства на 22, получим (8/5)2 + (6/5)2 = 22, то есть (64/25) + (36/25) — 4. Если умножить обе части равенства на З2, получим (12/5)2 + (9/5)2 = З2, то есть (144/25) + (81/25) = 9 — именно такое разложение и предлагает Диофант. Таким образом, решение найдено:
(
(
(
(
Вычтем 1/2 из обеих частей каждого равенства и получим ответ, предлагаемый Диофантом. Удивительно, но 13 = 1 + 4 + 4 + 4, то есть представить 13 в виде суммы четырех квадратов можно было намного проще! Подобное разложение дает следующее решение: 1/2, 3/2, 3/2, 3/2.
Загадочное примечание
Баше заметил, что в этой и других задачах «Арифметики» Диофант пользовался тем, что любое число можно представить в виде суммы четырех квадратов. Он проверил эту закономерность для всех чисел до 325, но ему хотелось найти строгое доказательство. Здесь в дело вступил гений Ферма:
Он писал: «Доказательство этой теоремы зависит от различных и запутанных свойств чисел, и я не могу привести его здесь. Я решил посвятить этому вопросу отдельный и полный труд и тем самым удивительным образом продвинуть арифметику далеко за пределы, известные еще с древних времен».
Но эта работа так никогда и не увидела свет. Написал ли ее Ферма? Действительно ли ему удалось найти какое-то доказательство? Неизвестно. Это еще одна загадка Ферма. Известно лишь, что этой задачей занимались математики масштаба Лежандра, Лагранжа, Эйлера и Гаусса, и каждому из них удалось внести свой вклад в ее решение.
В 1770 году Жозеф Луи Лагранж доказал случай для квадратов, то есть утверждение, что любое натуральное число можно представить в виде суммы четырех квадратов. Доказательство этой теоремы для треугольных чисел принадлежит Гауссу, который 10 июля 1796 года записал в дневнике: «**EYRHKA num = + + ».
Этот частный случай оказался эквивалентен следующему утверждению: любое число вида 8
Возвращаемся ко второй книге: задача 8
Задача 8 книги II, несомненно, является важнейшей вехой в истории, которая рассказывается в этой книге. Эта задача звучит так:
«Представить квадратное число в виде суммы двух квадратов».
Затем Диофант приводит следующее решение:
«Пусть дано квадратное число 16. Пусть
Здесь использован тот же прием, что и в задаче 32 книги II. Так как значение
Все эти решения очень легко найти. На полях страницы, где излагается эта задача, Ферма написал комментарий, который вошел в историю:
«
Что в переводе означает: