Читаем Том 9. Загадка Ферма. Трехвековой вызов математике полностью

РЕШЕНИЕ ДИОФАНТОВЫХ УРАВНЕНИЙ ПЕРВОЙ СТЕПЕНИ

Диофантовы уравнения имеют целые коэффициенты и целые решения. Сначала удалось решить диофантовы уравнения первой степени, что позволило найти решения многих практических задач. Рассмотрим один наглядный пример. Допустим, что наш сосед отправился за покупками и хочет купить растительного масла на целый год вперед. Вернувшись из магазина, он сказал, что нашел два сорта масла — один по 3,24 евро за литр, другой по 4,50 евро за литр — и что всего он потратил 43,20 евро. В ответ мы говорим, что И бутылок будет явно недостаточно на весь год.

Как мы узнали, сколько бутылок купил сосед, если мы даже не открывали пакеты, которые он принес из магазина? Обозначим за х число бутылок стоимостью 3,24 евро, за у — число бутылок по 4,50 евро. Выразим потраченную сумму с помощью уравнения и получим 3,24х + 4,50у = 43,20. Это уравнение имеет дробные коэффициенты, но если умножить обе части на 100, получим уравнение с целыми коэффициентами: 324х + 450у = 4320. Следовательно, нужно найти такие х и у, для которых это равенство было бы верным. Они должны быть целыми, так как число бутылок каждого сорта обязательно целое. Необходимое и достаточное условие наличия целых корней уравнения с целыми коэффициентами таково: наибольший общий делитель коэффициентов при неизвестных должен быть делителем свободного члена. Наибольший общий делитель 324 и 450 равен 18. 4320 нацело делится на это число. Поделив обе части уравнения на 18, получим 18х + 25у = 240. Теперь мы можем составить таблицу решений для этого уравнения. Для этого будем присваивать х целые значения, начиная с 0, и находить соответствующие значения у, которые удовлетворяют уравнению, то есть такие, что у = (240 — 18х)/25.

Из этой таблицы видно, что единственными целыми положительными решениями являются х = 5, у = 6, следовательно, всего наш сосед купил 11 бутылок растительного масла. Со временем методы решения уравнений подобного типа совершенствовались и были реализованы в компьютерных программах и инженерных калькуляторах.

* * *

В 1885 году сэр Томас Хит опубликовал первый перевод «Арифметики» на английский язык. Второе издание этого замечательного перевода увидело свет в 1910 году. В него были включены комментарии Баше, Ферма и других. Многие античные авторы оставляли в книгах свои комментарии. В различные издания и переводы часто включались примечания редактора и переводчика, но при этом не указывалось, что именно является частью исходного текста, а что — комментариями. Возможно, тогда считалось, что настоящий шедевр строится со временем и любой желающий может изучить его и дополнить чем-то новым. Следовательно, с исторической точки зрения очень важно иметь как можно больше изданий одной и той же книги, чтобы видеть, как ее текст изменялся со временем.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже