Система счисления называется аддитивной, когда значение каждого символа не зависит от места, которое он занимает в записи числа. Значение числа получается путем сложения значений отдельных символов.
Аддитивная система счисления
Счет от 1 до 9 в вавилонской системе был очень прост: вавилоняне рисовали одну палочку, две палочки и так далее. Здесь их система имеет признаки аддитивной. Хотя обычно палочки рисовались на определенных местах, все они имели одинаковое значение. Каждая палочка означала единицу. Так как цифры записывались палочками на глиняных табличках, то вертикальные палочки имели клиновидную форму. Они соединялись между собой и располагались симметрично, как показано на рисунке.
Для числа 10 вавилоняне использовали другой символ: повернутый раскрытый клин. Таким образом десятки и единицы накапливались до 59. Следовательно, система по-прежнему обладала свойствами аддитивности: одни символы всегда означали 1, другие — 10.
Позиционная система счисления
Начиная с числа 60 вавилонская система является позиционной. Чтобы представить число 60, во втором разряде, считая справа, рисовали палочку. Поэтому вавилонская система счисления и называется шестидесятеричной: палочка во втором разряде означает 60. Таким способом можно легко сосчитать до 3 600. Например, 72 записывается так:
Трудности начинаются, когда мы хотим записать число 62: на первом месте записываются две вертикальные палочки, на втором месте — еще один вертикальный клин. Нужно записать палочки очень аккуратно, чтобы не перепутать 62 (
Рассмотрим на примере, как можно перевести из шестидесятеричной системы в десятичную следующее число:
Сначала прочитаем шестидесятеричное число и запишем его в десятичной нотации по разрядам. Получим 20–11-1-23.
Затем вычислим десятичное значение этого числа. Справа записаны 23 единицы, 1 во втором разряде означает 60, 11 в третьем разряде нужно взять шестьдесят раз по шестьдесят (иными словами, умножить на 602) и, наконец, 20 в четвертом разряде нужно умножить на шестьдесят, умноженное на шестьдесят, умноженное на шестьдесят (то есть на 603). Так мы получим десятичное число:
20·603 + 11·602 + 1·60 + 23 = 4 359 683.
Десятичные числа
Подобно тому как в шестидесятеричной системе не использовался нуль, в ней также не существовало и десятичной запятой (разделителя). Поэтому понять, где должна находиться запятая, можно было только из контекста. В качестве примера переведем шестидесятеричное число
Затем вычислим десятичное значение этого числа. В левом разряде находится 10, равное десяти шестидесятым частям единицы (то есть 10/60). 2 в следующем разряде означает одну шестидесятую от шестидесятой части единицы (то есть 2/602).
Ив третьем разряде нужно умножить на одну шестидесятую одной шестидесятой от одной шестидесятой части единицы (то есть 11/603). Получим десятичное число:
10/60 + 2/602 + 11/603 = 0,167273…
Исследователи шли тем же путем, когда пытались разгадать значение чисел на табличке Плимптон 322. Сначала они пронумеровали столбцы и тщательно перевели все цифры в арабскую нотацию.
Для всех табличек в этой главе курсивом (в левом верхнем углу) выделены трудночитаемые числа, жирным шрифтом — предположительно ошибочные значения. Ниже приведены эти же числа, переведенные в десятичную систему по методу, описанному выше.