Читаем Том 9. Загадка Ферма. Трехвековой вызов математике полностью

По-видимому, эти числа не имеют особого смысла. Это может быть просто набор цифр. Заметим, однако, что в четвертом столбце, то есть в первом столбце справа, содержатся последовательные числа от 1 до 15, как будто бы что-то было пронумеровано. С другой стороны, можно сказать, что в первом столбце содержится последовательность шестидесятеричных чисел от 0 до 1, строго упорядоченных по убыванию. Некоторые из них более сложные и содержат больше цифр, например, число в десятой строке. Другие намного проще, как, например, число в 11-й строке. Но все же кажется невероятным, что между этими числами существует какая-то связь.

И здесь нужно обратить внимание на второй и третий столбцы, так как числа в третьем столбце всегда больше чисел из второго, и при делении мы также получим строго упорядоченную по убыванию последовательность чисел между 0 и 1. Таким образом, мы можем добавить в таблицу столбец V. Значения в нем будут рассчитываться по следующей формуле:

столбец V = столбец II столбец III.

Кроме того, можно легко показать, что если возвести каждое число во втором и третьем столбце в квадрат и вычесть одно из другого, то результат всегда будет квадратом целого числа. Таким образом, мы можем добавить в таблицу столбец VI. Значения в нем будут рассчитываться по следующей формуле:

столбец VI = √(столбец III2столбец II2).

Объединив все полученные числа в одну таблицу, мы сможем исправить некоторые ошибки в исходных числах. Например, все указывает на то, что во второй строке есть ошибка, так как число в столбце V не вписывается в убывающую последовательность чисел, а в столбце VI не получается целое число. Единственный способ исправить эти ошибки — записать в третьем столбце 4825 вместо 11 521.

Теперь числа согласуются между собой.

Расширенная таблица с исправленными ошибками (исправленные значения отмечены звездочками).

Но еще удивительнее значения чисел в первом столбце. Потребовалось немало воображения, чтобы догадаться, что при делении чисел из второго столбца на числа из шестого и возведении результата в квадрат получаются числа из первого столбца с точностью до последнего десятичного знака. Поразительно! Теперь мы можем исправить все ошибки в исходных числах.

Но откуда взялись все эти числа? Очевидно, что они записаны на табличке не случайно. В течение десятилетий исследователи предлагали различные объяснения. В первом приближении может показаться, что здесь перечислены пифагоровы тройки (в столбцах II, III и VI), то есть целые числа, удовлетворяющие соотношению из теоремы Пифагора. Числа в столбце II соответствуют длинам меньших катетов, числа в столбце III — длинам гипотенуз, числа в столбце VI — длинам больших катетов. Это подтверждает и надпись на аккадском языке над столбцами II и III. Возможно, столбец VI был записан на утерянной части таблички.

Но кому понадобилось выбрать столь сложные пифагоровы тройки? Существует множество значительно более простых троек, например, (3, 4, 5), (6, 8, 10) или (3, 12, 13). Все они соответствуют сторонам прямоугольных треугольников, но не приводятся в таблице. Хотя эта табличка могла быть не единственной, было бы логично предположить, что среди первых пятнадцати строк появятся некоторые из простейших пифагоровых троек.

Гипотеза Отто Нойгебауэра

Все это заставило математика Отто Нойгебауэра предположить, что числа в столбцах II и III на самом деле являются результатами вычислений над более простыми числами. Примерно в 1931 году Нойгебауэр предположил, что создателю таблички были известны формулы для определения пифагоровых троек на основе этих чисел. Для этого он выбрал два натуральных взаимно простых числа р и q, p > q. Затем он рассчитал следующие значения:

а = р2q2 (столбец II),

b = 2pq (столбец VI),

с = р2 + q2 (столбец III).

Нетрудно видеть, что

а2 + Ь2 = (р2q2)2 + (2pq)2 = р4 — 2p2q2 + q4 + 4р2q2р4 + 2p2q2 + р4 = (р2 + q2)2 = с2.

Следовательно, эти три числа образуют пифагорову тройку.

Руководствуясь этой гипотезой, Нойгебауэр начал дополнять табличку новыми столбцами, которые предположительно находились в левой, утерянной ее части.

Выбор значений p и q согласно гипотезе Отто Нойгебауэра (исправленные значения отмечены звездочками).

Казалось бы, все сходится. Кроме одиннадцатой строчки! Почему все числа в таблице не могут подчиняться общей закономерности? Почему закономерность нарушена именно в этой строке? Потому что она обладает крайне любопытным свойством. Числа, образующие пифагорову тройку (45, 60, 75) имеют общие делители: все они делятся на 15. Выполнив деление, получим тройку (3, 4, 5), которой соответствуют значения р = 2, q = 1.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература