От числа погибших от удара копытом лошади в прусской армии к числу забитых мячей в чемпионате Испании по футболу: распределение Пуассона Если переменная подчиняется биномиальному закону распределения, можно подсчитать, сколько раз она примет определенное значение (число качественных и число бракованных деталей). Эта переменная также будет иметь предельное значение: число качественных деталей не может превышать общего числа деталей в партии.
Иногда мы сталкиваемся с переменными, которые обозначают число событий, произошедших в единицу времени или на единицу площади. Такие переменные не имеют верхней границы, по крайней мере с теоретической точки зрения. К классическим примерам подобных переменных относится число посещений интернет-страницы в день, число поломок лифта в год, число звонков на АТС в час и, разумеется, число писем, ежедневно приходящих вам по электронной почте. К примерам событий, происходящих в пространстве, можно отнести следующие: число точек, пораженных ржавчиной, на метр проволоки, число дефектов на квадратный метр (или 10 квадратных метров) ткани, число изюминок в ложке с хлопьями, которые вы едите на завтрак.
В 1837 году французский математик Симеон Пуассон решил найти способ изменить формулу биномиального распределения так, чтобы ее можно было применить к подобным ситуациям. Он открыл любопытное выражение, в котором для расчета вероятности любого числа событий достаточно знать лишь среднее число событий (). Формула вычисления вероятности того, что некое событие произойдет
Так, если лифт ломается в среднем два раза в год ( = 2), вероятность того, что в течение года он не сломается ни разу, такова:
Если на интернет-страницу в среднем заходит 100 посетителей в день (будем считать, что число посетителей неизменно в любой день недели, хотя очевидно, что будет существовать определенная разница между рабочими и выходными днями), то вероятность того, что в конкретный день страницу посетит менее 80 человек, такова:
Выполнять расчеты по этой формуле не очень удобно, но нам опять помогут электронные таблицы:
В 1898 году русский экономист и статистик Владислав Борткевич опубликовал книгу, в которой доказал, что распределение Пуассона можно использовать для объяснения статистической закономерности, наблюдаемой при редких событиях. Он использовал данные о самоубийствах и несчастных случаях со смертельным исходом, но самым известным примером его работ является анализ числа солдат, умерших от удара копытом лошади в 14 корпусах прусской армии за 20 лет (с 1875 по 1894 год).
В следующей таблице фактическая частота соответствует числу армейских корпусов, умноженному на число лет (14·20 = 280). Среднее число умерших за год в пересчете на один корпус равно (91 + 2·32 + 3·11 + 4·2)/280. Используя это значение в вышеприведенной формуле, получим теоретические значения частоты, приведенные в таблице.
Если мы хотим найти более современный пример, то можно рассмотреть число голов, забитых командой во время футбольного матча. Эта переменная прекрасно соответствует требованиям распределения Пуассона: события происходят в течение четко обозначенного периода времени (футбольного матча), предельного числа событий не существует, а число незабитых голов подсчитать нельзя. Так, на диаграмме слева представлено число голов, забитых каждой командой в каждом из 380 матчей испанского чемпионата 2008–2009 годов. На диаграмме справа представлены данные, вычисленные по нашей формуле.
Диаграммы очень похожи. Модель Пуассона хорошо объясняет изменение числа мячей, забитых командой в течение матча.
Колокол
Колокол Гаусса встречается в математике очень часто. Его форма соответствует форме гистограммы, на которой представлено большое множество значений, подчиняющихся так называемому нормальному распределению. Например, мешки с сахаром весом 1 кг весят не ровно 1000,000… г — некоторые весят немного больше, другие — немного меньше. Подобное колебание веса неизбежно. Оно вызвано множеством незначительных факторов, по отдельности незаметных, но в сумме имеющих ощутимый эффект. На диаграмме ниже показано, что большинство значений находятся вблизи центрального значения, и по мере удаления от него соответствующие значения встречаются все реже и реже. Это классический колокол Гаусса, или диаграмма нормального распределения.