Если даны четыре точки, то все значения коэффициента корреляции равновероятны. Если дано пять точек, то наиболее вероятным значением является ноль. По мере роста числа точек начинает вырисовываться традиционный график в форме колокола.
* * *
В главе 2 упоминается, что в 1850 году швейцарский астроном бросил пару игральных костей (красного и белого цвета) 20000 раз. Полученные результаты были достаточно далеки от ожидаемых теоретических значений. Это дает основания подозревать, что в эксперименте, возможно, использовались несбалансированные игральные кости. Так как все шесть возможных результатов являются равновероятными, если мы бросим игральные кости 20 000 раз, то теоретически каждое значение выпадет 20000/6 = 3333 раза. В следующей таблице представлены результаты эксперимента, теоретические значения и абсолютная величина отклонения от теоретических значений.
Являются ли эти отклонения достаточно большими, чтобы говорить о несбалансированности игральных костей? Или же эти отклонения могут возникнуть случайным образом? В конце концов, если бы результаты эксперимента в точности совпадали бы с теоретическими значениями, это тоже выглядело бы странно. Чтобы развеять сомнения, проверим статистическую гипотезу по той же схеме, что использовал Фишер для решения задачи о дегустаторе чая. Будем предполагать, что игральные кости сбалансированы, и отвергнем эту гипотезу только в том случае, если полученные данные будут явно ей противоречить.
Будем анализировать максимальное отклонение между полученными и теоретическими значениями. В предыдущей таблице показано, что для красного кубика эта величина равна 417, для белого — 599. Зададимся вопросом: каковы ожидаемые значения этой величины для идеально сбалансированных игральных костей? И снова на этот вопрос можно ответить с помощью моделирования.
Смоделируем 20000 бросков игральной кости, подсчитаем, сколько раз выпадет каждое значение, и рассчитаем максимальное отклонение от теоретического значения. При первом моделировании максимальное отклонение равнялось 83, при втором — 97. После того как моделирование было выполнено 10000 раз, была получена гистограмма, представленная на следующем рисунке. На ней также указаны значения, соответствующие красному и белому игральному кубику.
Очевидно, что данные эксперимента противоречат гипотезе о сбалансированности игральных костей. Если бы эта гипотеза была верна, то вероятность получить подобные данные была бы очень, очень мала. В этом случае
В качестве показателя, обобщающего данные эксперимента, можно использовать не максимальное отклонение, а величину, в которой учитывается отклонение для всех шести возможных результатов броска игральной кости.
Такой величиной может быть сумма всех отклонений, равных разности фактической и теоретической частоты, возведенных в квадрат (чтобы положительные и отрицательные отклонения не скомпенсировали друг друга), разделенная на теоретическую частоту.
Для красной игральной кости эта величина будет равна
Расчеты могут показаться вам излишне сложными, но эта величина обладает определенным преимуществом: она не требует моделирования распределения для случая, когда нулевая гипотеза верна (так называемого эталонного распределения). Эта величина называется критерий
Для обычных статистических тестов нет необходимости в моделировании распределения величины. Вместо этого оно выводится с помощью математических методов. Формула для расчета распределения коэффициента корреляции достаточно сложна и не имеет своего названия, хотя при большом размере выборки это распределение близко к нормальному. Первым, кто вывел формулу для этого распределения, был не кто иной, как Рональд Эйлмер Фишер.
* * *