Используя массы топ-кварка и бозона Хиггса, можно построить своего рода диаграммы состояния электрослабого вакуума, то есть график, похожий на те, с помощью которых характеризуется физическое состояние жидкости, например воды. В самом деле: мы знаем, что в зависимости от давления и температуры вода может находиться в жидком, твердом или газообразном состоянии. В обычном состоянии, то есть при атмосферном давлении, при температуре ниже 0 °C вода замерзает, при температуре от 0 °C до 100 °C находится в жидком состоянии, а при температуре выше 100 °C переходит в газообразное состояние. Что‑то подобное происходит и с электрослабым вакуумом, состояние которого может изучаться как функция массы топ-кварка и массы бозона Хиггса, играющих роль, аналогичную той, что давление и температура играют для воды.
И тут нас поджидает сюрприз. На основании этого исследования становится ясно, что наша Вселенная какая‑то очень специальная. При существующих совершенно особых значениях массы топ-кварка и массы бозона Хиггса она оказывается в метастабильном состоянии, то есть заключенной в узком промежутке между областью устойчивого равновесия и бездной тотальной нестабильности.
Если бы массы топ-кварка и бозона Хиггса были чуть‑чуть другими, электрослабый вакуум оказался бы настолько нестабильным, что в нем была бы невозможна никакая эволюция: микроскопический разрыв в квантовом вакууме, проделанный Большим взрывом, немедленно бы затянулся, и все бы закончилось, не успев даже начаться. С этими же “совершенно особыми значениями” электрослабый вакуум, напротив, смог удержаться и закрепиться надолго, на целые миллиарды лет, позволив эволюции довести дело до появления нас с вами.
Но и стабильность при этом совсем не абсолютна. Если в какой‑то части Вселенной по какой‑то таинственной причине возникнет сгусток энергии, в миллиарды раз превосходящий ту, что мы производим в LHC, электрослабый вакуум может разрушиться. По всей вероятности, этот разрыв не будет оставаться локальным. Когда в какой‑то одной области система устремится к новому равновесию, весь избыток энергии, аккумулированный вакуумом, превратится в излучение, а весь космос – в огромный огненный шар.
Итак, мы приходим к двум возможным сценариям конца Вселенной. Если электрослабый вакуум удерживается, темная энергия будет отталкивать все от всего до тех пор, пока мрак и холод не воцарятся беспредельно. Ну, а изменение структуры вакуума (то есть космическая катастрофа) может, напротив, прервать замороженный макабрический танец темной энергии и вытолкнуть нас с этой сцены куда более решительным и значительно более эффектным пинком.
Однако у нас есть чем утешиться: оба эти сценария, судя по тому, что нам известно на сегодняшний день, в ближайшее время не реализуются. Так что мы все еще можем строить планы на летние каникулы или мечтать о пенсии. Очень вероятно, что у Вселенной есть в запасе несколько миллиардов лет относительно спокойной жизни.
Но интригует меня в этой истории вот что: метастабильное состояние нашей Вселенной, похоже, определяет связь между бренностью человеческого существования и шаткостью Вселенной в ее целокупности. Хрупкость человеческих существ, ненадежность наших тел, которые могут быть напрочь испорчены одним-единственным фрагментом ДНК, если в нем что‑то вдруг не сложится, или простым падением с лестницы, словно бы отражает космическую бренность, присущую даже окружающим нас галактикам и их скоплениям, когда‑то казавшимся нам бессмертными.
Следствия гипотез относительно стабильности электрослабого вакуума сильно подогрели интерес к теориям, в которых фигурирует мультиверсум. Если принимается та точка зрения, что наша Вселенная – одна из множества других вселенных, характеризующихся различными и случайными начальными условиями, то чего удивляться, что у нас такие исключительные значения масс у топ-кварка и бозона Хиггса? Окажись они другими, времени жизни Вселенной не хватило бы на появление живых существ, достаточно умных, чтобы задавать такие вопросы[50]
.Картина становится более простой и понятной. Представим себе ребенка с завязанными глазами, вытаскивающего случайным образом фанты с номерами из вращающегося барабана, – вроде того, что используют при игре в лото. Каждый номер задает значение некоей фундаментальной константы в данной вселенной. Для бесчисленного количества вселенных эволюция окажется кратчайшей. Для везунчиков – какое‑то время продлится. Наконец, для супервезунчиков она продлится миллиарды лет, как у нас.
Дабы разобраться во всем этом, нам надо, чтобы LHC продолжал свою работу, а мы продолжали исследовать природу и строить новые ускорители. Электрон-позитронные, чтобы использовать их как фабрики миллиардов копий бозона Хиггса для дальнейшего и точного измерения всех его параметров. Протон-протонные с высочайшей энергией, чтобы исследовать подробности спонтанного нарушения электрослабой симметрии и искать новые частицы и новые взаимодействия.
Так началась охота за Новой физикой.
Глава 9
Ворота в будущее