Между тем стартовал проект Будущего кольцевого коллайдера (FCC –
Предложение родилось в 2014 году и тут же получило значительную поддержку со стороны международного сообщества физиков. В работе исследовательской группы в настоящее время принимают участие сотни ученых из десятка стран. Заключительный отчет предусмотрен на 2018 год, и он должен будет заложить основу для выработки новой европейской стратегии в области ускорителей частиц. К этому времени мы ожидаем принятия решений, которые обозначат направление развития физики в первой половине этого века[59].
Даже просто вырыть такой большой тоннель в этом месте – уже задача не из легких. Новый ускоритель должен будет расположиться под всей Женевой, включая озеро Леман, на глубине от 200 до 400 м. При этом надо непременно избежать многочисленных водоносных горизонтов и по максимуму воспользоваться устойчивыми геологическими слоями, лучше пригодными для проходки. Предстоит извлечь миллионы тонн горной породы и каким‑то образом рассеять их в регионе с плотной городской застройкой, а также предусмотреть колодцы доступа 400‑метровой глубины, найти адекватные средства передвижения для транспортировки людей и грузов на расстояния в десятки километров… и сделать еще много другого. Зато преимуществом этого места является доступ к развитой инфраструктуре: цепи ускорителей ЦЕРН вплоть до LHC, которые могли бы выступить в качестве инжекторов, и электроэнергетическая сеть, способная удовлетворить все потребности нового ускорителя.
С физической точки зрения последовательное использование двух ускорителей, FCC-ee и FCC-hh, представляется на данный момент оптимальной конфигурацией. Ускоритель электронов можно было бы построить сразу, как только будет готов тоннель. Для этого можно будет использовать имеющиеся технологии, а промышленное изготовление магнитов и резонаторов осуществлять параллельно с рытьем тоннеля. Детекторы не потребуют серьезных модификаций по сравнению с теми, что уже были сделаны на LHC. С оптимизмом глядя в будущее, можно ожидать принятия решения уже в 2018 году, начала строительства – в 2023‑м, а запуска – в 2035‑м, как раз в конце этапа высокой светимости на LHC.
Но вот протонный ускоритель – машина значительно более сложная, для которой потребуется многолетнее налаживание производства магнитов в промышленном масштабе. Сценарий, предусматривающий начало перехода к FCC-hh в 2040 году, позволил бы поработать над лучшими решениями для сверхпроводящих магнитов, которым суждено стать сердцем всего предприятия. С другой стороны, те же детекторы для нового ускорителя крайне сложны: понадобятся новые технологии и по меньшей мере десять лет разработок, прежде чем удастся начать промышленное производство различных их компонентов.
Физическая программа FCC-ee сфокусирована на точных измерениях параметров бозона Хиггса, топ-кварка и других фундаментальных параметров Стандартной модели. Предусматривается работа ускорителя при 90 ГэВ для производства большого количества Z-бозонов, чтобы затем повысить энергию до 160 ГэВ для генерации пар W-бозонов, потом повысить ее еще раз – до 240 ГэВ, для производства бозонов Хиггса в связке с Z-бозоном, и, наконец, достичь 350 ГэВ для получения пар топ-кварков. Для измерения констант связи бозона Хиггса с другими частицами FCC-ee позволит достичь относительной погрешности в пределах от 1 % до 0,1 %.
При 100 ТэВ на FCC-hh было бы возможно исследовать масштаб энергий, в семь раз превышающий LHC. Всякое новое состояние материи с массой от нескольких ТэВ до нескольких десятков ТэВ можно будет идентифицировать напрямую; вдобавок можно будет выяснить, элементарен ли бозон Хиггса или у него есть внутренняя структура, а также станет возможно изучить те детали спонтанного нарушения электрослабой симметрии, которые обладают определяющим значением для окружающего нас мира. Высокая светимость FCC-hh, до десяти раз превышающая светимость LHC, позволит наконец производить миллионы бозонов Хиггса, распространив с помощью FCC-ee точные измерения на те параметры частицы, которые до того было сложно измерить.